

Verifying Effectful Haskell Programs in Coq

We expect you to
be familiar with
Haskell and con-
cepts like monads.

Program verification is one area of research our group engages in.
Specifically, we are interested in reasoning about functional programming
languages like Haskell. Although functional programs are said to be more
easily verifiable, purely functional programs are rare in practice. For
example, effects occur when defining a partial function or when using the
error function. Such effects need to be considered explicitly when
reasoning about Haskell programs in a proof assistant like Coq because
the modeling language does not support partiality or errors.

In order to model effects in Coq, we are pursuing an approach that
translates Haskell code into monadic Coq code. In other words, we try to
reuse as much of the original definition as possible and add a monadic
layer that allows us to model effects like partiality. Supported by multiple
student theses, we have developed a framework and translation tool for
reasoning about effectful Haskell programs in Coq.

Depending on your interests and familiarity with Haskell or Coq, there are
different ways for you to participate in our work. On one hand, you can
improve and extend the translation tool, which is written in Haskell. On
the other hand – if you are already familiar with Coq – you can extend the
framework with, for example, more user-friendly proof tactics or custom
equality relations. We are also interested in evaluating how well our tool
can be applied to specific problems in practice.

Our goal is to improve the usability as well as the scope of effects our
tools can reason about. Besides the class of simple effects like partiality
or error, there are also more complex effects like non-strict tracing or
non-determinism, which are part of our research language Curry. We are
currently evaluating how the interplay of such effects with Haskell’s
sharing mechanism can be modeled by our framework.

Unless you want to
immediately start
working with Coq,
prior knowledge is
not required.
We expect you to
quickly get com-
fortable with the
language.

Kiel is the capital of Germany’s northernmost federal state with a direct
border to the Baltic Sea. Every summer, the “Kiel Week” gathers tourists
and sailors from all over the world to celebrate the annual sailing
festival. Ten percent of Kiel’s inhabitants are students at the university.

Our group consists of three PhD students (from their first to fifth year)
and our advisor Prof. Michael Hanus. We like declarative languages
such as Haskell and Coq and use Curry as a research language.

We look forward to a successful project and are glad to respond to any
questions beforehand, just write us an email!

Curry is a functio-
nal logic language
with built-in non-
determinism.

M.Sc. Sandra Dylus & M.Sc. Niels Bunkenburg Programming Languages and Compiler Construction Group

Department of Computer Science

http://www.ps.informatik.uni-kiel.de/en/team/m-sc-sandra-dylus
http://www.ps.informatik.uni-kiel.de/en/team/m-sc-niels-bunkenburg
https://www.ps.informatik.uni-kiel.de/en
https://www.youtube.com/watch?v=VU26qkZiyl8

	Slide 1

