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Abstract
Curry is a functional logic programming language that features non-strict non-determi-
nism based on Haskell-like syntax. These properties make Curry an interesting object
of software verification.

The approach of formalizing Haskell programs in a proof assistant like Coq, as de-
scribed by Dylus et al. [2019], cannot be applied directly to Curry due to the interaction
of non-determinism with sharing. These so-called call-time choice semantics therefore
necessitate explicit modeling of sharing as effect.

In this thesis, Curry’s call-time choice semantics are modeled using a combination
of the free monad and effect handlers as presented by Wu et al. [2014]. We explore
different aspects of explicit sharing andmultiple approaches for modeling scoped effects.
Finally, we prove some properties – similar to the laws of sharing introduced by Fischer
et al. [2009] – of the model in Coq.
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1
Introduction

Software verification is difficult. Each day, the amount of software that influences
many aspects of our lives – ranging from communication over socialization to trans-
portation – grows increasingly. The results of software not behaving as intended begin
with minor annoyances like a sluggishly responding website and end with catastrophic
failures that cost human lives.

Verification techniques like testing, static analysis and formal proofs are an important
part of finding programming errors and ensuring that software works as specified. Al-
though there are no flight control computers running on a functional logic languages
like Curry (yet), unique features like non-determinism make Curry an interesting object
of software verification.

Verifying the functional language Haskell in Coq, an interactive proof assistant, is a
topic of active research, for example by Breitner et al. [2018] and Dylus et al. [2019].
Due to its syntactic resemblance of Haskell, one might assume that Curry can be verified
in Coq in a similar matter. However, sharing –which serves a purely performance-related
purpose in Haskell – interacts with Curry’s non-determinism in a way that necessitates
explicit consideration in the model.

One approach to modeling the semantics of a programming language in Coq is to
translate definitions into equivalent Coq code whenever possible. Effects, that is, fea-
tures of a language that surpass pure computation of values, are then modeled by means
of other methods and integrated with the translated code. The result is a combination
of native Coq code and modeled effects that, ideally, behaves identical to the original
language and can be formally reasoned about.

In the context of Curry, we are interested in call-time choice, that is, the interaction
between the effects non-determinism and sharing in combination with non-strict eval-
uation. The technique chosen to model this effect is based on the approach of Wu et al.
[2014], that is, a combination of the free monad, which is used to represent effect syn-
tax, and effect handlers that describe the semantics. Since directly modeling call-time
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1. Introduction

choice in Coq is complicated by some restrictions that Coq’s proof system entails, the
model is first implemented in Haskell and then transferred to Coq.

1.1. Goals

The goal of this thesis is to model Curry’s call-time choice effect using the effect handler
approach. This includes exploring how effects can be modeled in other languages, for
example, how the KiCS2 compiler represents non-determinism when compiling Curry
code to Haskell, or how an explicit sharing operator, as introduced by Fischer et al.
[2009], can be implemented.

Based on the insights obtained in this process, we then want to extend a framework
for modeling effects presented by Wu et al. [2014] to model the call-time choice effect.
Since call-time choice is combined from multiple effects, one of which is a scoped effect,
we want to investigate how such effects can be modeled.

Finally, when an adequate Haskell model is found, we want to transfer the imple-
mentation to Coq in order to verify that the model does not depend on Haskell’s non-
strictness or built-in sharing. Furthermore, the last goal of the thesis is to attempt prov-
ing the laws of sharing defined by Fischer et al. [2009] for the Coq implementation.

1.2. Structure

The next chapters are structured as follows. Firstly, we begin chapter 2 with prelimi-
naries about the unique features of Curry and an introduction to the language Coq. In
addition, an overview of techniques that can be used to represent non-determinism and
explicit sharing in Haskell is given.

In chapter 3, we then have a detailed look at effects and effect handlers, followed by an
implementation of sharing as effect. We explore different approaches and incrementally
develop an explicit sharing operator that models Curry’s call-time choice semantics. The
chapter is concluded with two exemplary algorithms that make use of non-determinism
and sharing.

We begin chapter 4 with an explanation of the challenges that transferring the Haskell
implementation to Coq poses. In the following section, the concept of containers is
introduced, which allows representing effect functors in a way that is accepted by Coq.
We discuss the differences of the simplified Coq implementation, compared to Haskell,
and how the implementation of the sharing effect can be transferred to Coq.

As an intermediary section, we have a look at how non-strict non-determinism works
in Curry and the Coq model. Finally, a higher-order variation of the previous approach
is discussed.

Second lastly, we discuss program equality and induction principles in chapter 5.
Based on this, we then try to prove the laws of sharing for the Coq implementation.

The last chapter summarizes the approach and findings of the thesis. An overview of
related work is given and future work is discussed.

2



2
Preliminaries

This chapter introduces the languages Curry and Coq as well as the modeling meth-
ods that are applied in the next chapters of the thesis. A sufficient understanding of
functional programming languages like Haskell and the underlying concepts – such as
algebraic data types, polymorphism, type classes and monads – is assumed.

2.1. Curry

Curry [Hanus et al., 2016] is a functional logic programming language based on Haskell.
Its syntax is therefore largely the same and many features like pattern matching, poly-
morphism, higher-order functions and type classes are supported in Curry, too. Besides
its functional part, Curry incorporates logical aspects known from languages like Pro-
log. These include non-determinism and free variables, that is, multiple values as the
result of evaluating an expression and a representation of unknown values.

Curry programs can be executed using one of many compilers. Most notable are
KiCS21 and PAKCS2, which compile Curry code into Haskell and Prolog programs, re-
spectively.

Due to Curry’s similarity to Haskell, only unique features that are relevant for this
thesis are discussed, beginning with the three core properties that make up call-time
choice.

2.1.1. Non-Strictness

Usually when the evaluation of a subexpression fails, the whole expression fails, too.
These so-called strict semantics is the idea behind the evaluation strategy of most mod-
ern languages. However, certain aspects of strict languages like conditional branching
need to be evaluated non-strictly because loops would otherwise not terminate, for ex-
ample.

1https://www-ps.informatik.uni-kiel.de/kics2/
2https://www.informatik.uni-kiel.de/~pakcs/
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2. Preliminaries

In contrast, it is also possible to give a whole language non-strict semantics, as evi-
denced by Haskell and Curry. This means that an expression may have a value, although
some subexpressions are not evaluated yet. Consequently, non-strictness allows defining
conceptually infinite data structures like a list of all powers of two.

pow2s :: [Int]
pow2s = 1 : map (2*) pow2s

Although this list is infinite and cannot be evaluated wholly, non-strictness allows us to
evaluate only the parts that are demanded by the surrounding expressions, as shown
below.

λ> take 4 pow2s
[1,2,4,8]

Non-strict semantics can be implemented using an outermost evaluation strategy. This
means that the reducible term closest to the root of the expression is evaluated first. For
example, take 2 pow2s is evaluated using an outermost strategy as follows.

take 2 pow2s
= take 2 (1 : map (2*) pow2s)
= 1 : take 1 (map (2*) pow2s)
= 1 : take 1 (map (2*) (1 : (map (2*) pow2s)))
= 1 : take 1 (2 * 1 : map (2*) (map (2*) pow2s))
= 1 : 2 : take 0 (map (2*) (map (2*) (1 : map (2*) pow2s)))
= 1 : 2 : []
= [1, 2]

The example shows the concept of alternating production and consumption of data.
When take cannot consume a list element because its second argument is not in head
normal form, that is, the root expression is not a constructor or lambda abstraction,
pow2s is evaluated to produce the demanded list element. This process repeats for the
second element. When the first argument of take reaches zero, the list argument is not
evaluated further and the empty list is returned. Consequently, it does not matter if
a function has an argument whose evaluation would fail, as long as the value is not
evaluated by the function. For example, const 42 (head []) has the value 42 in
Curry.

2.1.2. Non-Determinism

Evaluating expressions in Haskell is deterministic, that is, an expression either evalu-
ates to one result or the evaluation fails. Since it is possible to define functions with
overlapping patterns, Haskell uses only the first matching rule to determine the result
of a computation. In Curry, however, this restriction is not present. If multiple patterns
match an expression, the computation becomes non-deterministic and each applicable
rule returns a result. The most simple, but very useful, non-deterministic function is the
choice operator, which is defined as follows.
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(?) :: a -> a -> a
x ? _ = x
_ ? y = y

Both rules match any argument, so 0 ? 1 yields both 0 and 1 as results.
Non-deterministic functions do not differ from deterministic ones in regard to the

type system because there is no special syntax to denote this property in the signa-
ture. Although it is necessary to inspect the definition of a function in order to de-
termine whether it is non-deterministic, we can freely combine deterministic and non-
deterministic functions this way.

When a deterministic function is applied to a non-deterministic argument, the func-
tion becomes non-deterministic itself.

λ> even (0 ? 1)
True
False

However, this effect is limited by non-strictness. If a function does not evaluate the non-
determinism contained in one of its arguments, the function remains deterministic. For
example, const 42 (0 ? 1) yields 42 only once.

Besides multiple values as the result of evaluating a non-deterministic expression,
failure is also a valid result. There are two kinds of failures in Curry: silent failures as
part of a non-deterministic computation and top-level failures. The former is shown in
the following example.

λ> head ([] ? [1])
1

The choice operator in the argument of head makes the function non-deterministic.
Whereas the first choice branch fails, the second one succeeds and returns the value 1.
Although one computation failed, this is not apparent from the result, unless the failure
happens at top-level. In this case, the whole computation fails.

2.1.3. Sharing

The last aspect of call-time choice is sharing, that is, computing the result of an expres-
sion only once even if it is used multiple times. When a variable is introduced via a pat-
tern or local binding, each occurrence of the variable in an expression acts as a pointer
to the same computation. Due to referential transparency, it does not make a difference
if or how many times an expression is recomputed. Thus, sharing does not affect the
semantics in Haskell. In Curry, however, non-determinism can occur in shared expres-
sions, for example as follows.

double :: Int -> Int
double x = x + x

When double is called with a non-deterministic argument, there are two possible op-
tions: Firstly, the choices in both occurrences of x can behave independently of each
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other, which is called run-time choice. Secondly, there is call-time choice. Conceptu-
ally, call-time choice means that the decision of which branches are taken in a non-
deterministic argument are determined at the time the function is called. Of course
this does not mean that the argument is evaluated before the function is called. In-
stead, sharing that is introduced by a pattern variable means that, whenever a decision
is made in any occurrence of the shared variable, the same decision must be made in all
other occurrences of the variable. Consequently, sharing that is introduced by pattern
variables can be transformed into local bindings.

double (0 ? 1)
= let x = 0 ? 1 in x + x
6= (0 ? 1) + (0 ? 1)

However, replacing the occurrences of a variable with the shared expression gives the
function call different semantics because the choices become independent of each other.
Whereas both expression with shared non-determinism return only 0 and 2 because the
decisions are made uniformly, the last expression evaluates to 0, 1, 1 and 2 since both
terms of the sum can be 0 and 1, independent of each other.

With non-strictness, non-determinism and sharing as the main components of call-
time choice, we have discussed the main aspects we want to model. In the next section,
we focus on a language that allows us to formally reason about such a model.

2.2. Coq

Coq is an interactive proof assistant created by The Coq Development Team [2019]. At
its core, Coq consists of the functional, dependently typed specification language Gallina
and the proof tactic language Ltac. Gallina programs are structured as sentences of The
Vernacular commands, where each sentence begins with a capital letter and ends with
a dot. Sentences are processed sequentially, that is, from top to bottom of the file.

The most actively developed tools for programming in Coq are CoqIDE, a standalone
editor developed together with the language, and the Emacs package Proof General3 or
its extension Company-Coq4. The latter is shown in the Figure 2.1.

The interface is split into two main parts: The left-hand side shows the program and
current progress, where loaded sentences are colored in light blue. The lower right-
hand side region of the screen shows errors and other messages, while the upper part
is used for proofs. The proof context, that is, all variables that have been introduced so
far, is shown at the top. Separated by a line, the current goal follows below the context.

In the following, an introduction to the syntax and concepts of Coq is given. We begin
with data types and functions, followed by propositions and proofs as well as dependent
types. Lastly, Coq’s section mechanism is explained.

3https://proofgeneral.github.io/
4https://github.com/cpitclaudel/company-coq
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2. Preliminaries

Figure 2.1.: Interface of the Company-Coq package for Emacs

2.2.1. Data Types

One important aspect of functional programming languages is the ability to easily define
new data types. In Coq, constructor-based data types are defined using the keyword
Inductive, which is followed by the name of the type and a list of type arguments.
After a colon, the type of the definition follows, which is usually Type for inductive data
types. The following example shows the predefined option type, which is equivalent
to Maybe in Haskell.

Inductive option (A : Type) : Type :=
| Some : A -> option A
| None : option A.

Constructors of inductive data types are defined by giving the full type, similar to
GADTs in Haskell. Unfortunately, there seems to be no capitalization standard for names
of constructors and types in Coq, even across predefined libraries. In the following,
self-defined types are capitalized and constructors begin with a lowercase letter.

Based on the definition of option, we can define values like Some nat 42 or None
bool. By default, all arguments – including type variables – need to be specified when
defining values of polymorphic data types. However, the command Set Implicit
Arguments can be used to enable Coq’s ability to infer values which can be derived
directly from other arguments. Since the type of an expression can be inferred, we can
omit the type argument of Some.

7
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Nested Inductive Types Based on the option type, we can define a list type with
optional components as follows.

Inductive List A : Type :=
| nil : List A
| cons : option A -> option (List A) -> List A.

Since option is applied to List in the second constructor, this kind of definition is called
nested inductive. Although we have enabled implicit arguments, we still have to give an
explicit type argument to nil, as shown in the following example.

🐔> Check cons (Some 42) (Some (nil nat)). (* command *)
List nat (* output *)

The command Check is used to print the type of an expression. Since there is no
ghci-like REPL for Coq, commands are written as part of the program and usually
deleted afterwards. Nevertheless, commands and the corresponding output are visu-
alized REPL-like as shown above.

The type argument of nil cannot be inferred yet because no argument of nil holds
information about A. Nevertheless, it is possible to infer the type argument from the
context of nil, where A is defined as nat by the first argument of cons. Such contextual
inference of values can be enabled with the command Set Contextual Implicit.
Now we can use List without explicit type arguments.

In some situations, the type inference is not able to gather all required information.
For example, defining cons None None leads to the error message “Cannot infer the
implicit parameter A of cons whose type is Type”. Thus, it is possible to explicitly pass
implicit parameters by adding @ in front of the function or constructor name.

Definition empty A := @cons A None None.

2.2.2. Functions

Based on data types, we can define functions that create or process data. The keyword
Definition is predominantly used to define values, types and non-recursive functions.
Since data types and functions defined in Gallina are the input of Coq’s proof verification
logic, the specification language only allows terminating definitions. Consequently, Coq
distinguishes recursive and non-recursive functions by means of an explicit Fixpoint
operator for recursive functions. As an example of a simple non-recursive function, we
define the function head for the List type with optional components.

Definition head A (oxs : List A) : option A :=
match oxs with
| nil => None
| cons ox _ => ox
end.

Similar to data types, all occurring type variables need to be introduced explicitly in the
function head.
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Pattern matching in Coq is done using the match construct. All functions must be
total and thus, if an argument is matched, the patterns must be exhaustive.

Since the elements of List are optional by definition, the return type is wrapped in
option, too. A partial function like head for ordinary lists in Haskell cannot be defined
in Coq due to the totality requirement. However, it is possible to define lists in a different
way that circumvents this problem, as described in subsection 2.2.4.

As an example of recursive functions, we define an append function for List. Simi-
lar to the situation we encounter later in chapter 4, the List arguments are wrapped
in option types because optional components alone are not sufficient to model some
aspects of call-time choice.

Fail Fixpoint app A (oxs oys : option (List A)) : option (List A) :=
match oxs with
| None => None
| Some xs =>

match xs with
| nil => oys
| cons oz ozs => Some (cons oz (app ozs oys))
end

end.

As indicated by Fail, this definition fails to load in Coq with the error message “Cannot
guess decreasing argument of fix”. Such errors generally mean that Coq is not able
automatically detect that a recursive function terminates for every input. The reason for
this requirement is explained in more detail in section 4.1. In short, Coq’s termination
checker ensures that the proof logic remains sound. However, the termination check is
too restrictive in some situations, as evidenced by app.

The recursive call of app has ozs as its first argument, which is a subterm of xs
and, consequently, oxs. Thus, app is always called with a structurally decreasing value.
This implies that the function eventually terminates. Unfortunately, Coq is not able to
track subterms across multiple levels of pattern matching in combination with nested
inductive types. Chlipala [2013] describes this topic as follows.

There is no deep theoretical reason why this program should be rejected;
Coq applies incomplete termination-checking heuristics, and it is necessary
to learn a few of the most important rules. The term “nested inductive type”
hints at the solution to this particular problem[:] […] nested types require
nested recursion.

In the example of app, nested recursion is not necessary because option is not a recur-
sive type. The basic idea, however, still applies. Instead of defining a single function
that handles the nested patterns of a nested type, we split the function into two parts.
First, however, we generalize the first match expression over optional values into the
function bind.
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Definition bind A B (o : option A) (f : A -> option B) : option B :=
match o with
| None => None
| Some x => f x
end.

Now we remove the option wrapper from the first List argument and reuse the
remaining definition of app, except for the second argument of cons.

Fixpoint app' A (xs : List A) (oys : option (List A))
: option (List A) :=
match xs with
| nil => oys
| cons oz ozs => Some (cons oz (bind ozs (fun zs => app' zs oys)))
end.

Since app' expects an argument of type List A but the second argument of cons has
the type option (List A), we use bind to retrieve the list zs for the recursive call.

Now we can define the last remaining part of the function, that is, a definition that
has the original type of app and uses app', with the help of bind.

Definition app A (oxs oys : option (List A)) : option (List A) :=
bind oxs (fun xs => app' xs oys).

These three definitions are all accepted by Coq and allow us to define recursive functions
over nested inductive types.

Program Fixpoint Another example of a recursive function that Coq’s termination
check does not accept is the Quicksort algorithm. For this purpose, we use the predefined
list type in Coq, whose constructors are named the same as for our self-defined lists.
Using the predefined filter function and Boolean comparison operator leb as well as
Boolean negation, the Quicksort function could look as follows.

Fail Fixpoint quicksort (xs : list nat) : list nat :=
match xs with
| nil => nil
| cons y ys =>

let le := fun x => Nat.leb x y in
let gt := fun x => negb (Nat.ltb x y)
in quicksort (filter le ys) ++ [y] ++ quicksort (filter gt ys)

end.

To define the predicate arguments of filter, we use anonymous functions, which are
written in Coq using the keyword fun.

The definition of quicksort is not accepted by Coq because the argument of the
recursive call is modified by another function and thus, is not necessarily structurally
decreasing. Nevertheless, there is a way to define such functions.
Program Fixpoint, which is special syntax that can be imported using the com-

mand Require Import Program, splits the definition into two parts. The first part is
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almost the same definition as before, except for an additional argument called measure.
This value is used as evidence that the function is called with structurally decreasing ar-
guments. In the case, we use length xs as measure because each call of quicksort
splits the input list into two structurally smaller lists for the recursive calls.

The second part of a Program Fixpoint definition are proof obligations. Coq allows
calling a function defined by Program Fixpoint only after proving these termination
properties. The proof obligations are automatically generated based on the function
definition and the supplied measure. Since we have not yet discussed how proofs in
Coq work, this is the topic of the next subsection.

2.2.3. Propositions and Proofs

The goal of a proof in Coq is to construct evidence that a certain proposition holds.
Propositions have the type Prop and represent statements about Gallina structures. For
example, 1 = 0 is a proposition, although not a provable one.

The term “constructing evidence” is related to the Curry-Howard Correspondence, which
suggests that logical proofs and computational values are strongly connected. When we
reason mathematically about a statement like 1 = 1, we might argue that equality is a
reflexive relation and thus, the statement must be true. We can do the same in Coq as
follows.

Lemma eq11 : 1 = 1.
Proof. reflexivity. Qed.

Propositions can be defined as a theorem or lemma with the corresponding keyword.
A proof usually follows below the lemma, beginning with the command Proof and
ending with Qed. Ltac tactics like reflexivity represent values that Coq constructs in
the background when a proof is defined. The constructed value can be printed using
the command Print as follows.

🐔> Print eq11.
eq_refl : 1 = 1

When we talk about values in the context of proofs, the type operator : can be read as
“is a proof of”, that is, eq_refl is a proof of 1 = 1, in this case. In order to find out
more about eq_refl, we can ask Coq for the definition of the equality operator, using
Locate and then Print.

🐔> Locate "=".
Notation "x = y" := eq x y : type_scope (default interpretation)

🐔> Print eq.
Inductive eq (A : Type) (x : A) : A -> Prop := eq_refl : x = x

Now we know that = is a notation for the inductively defined proposition eq. “Inductively
defined” means that a proposition consists of multiple constructors whose definition
is usually related to the inductive data type that the proposition reasons about. The
constructor eq_reflmatches values of all types and can be applied if its first argument
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x and second argument – the argument of type A that follows – are the same. Since this
is the case in our example, the value eq_refl proves the proposition.

Based on this first idea of Coq’s proof logic, we can now return to the QuickSort
example and discuss the termination proofs. Before we begin, we consider properties
of filter that might be useful in the proofs. For example, when we filter a list xs with
an arbitrary predicate p, the resulting list should always be smaller or at most equally
long as xs.

Lemma filter_length: forall (A : Type) (xs : list A) (p : A -> bool),
length (filter p xs) <= length xs.

Proof.
intros A xs p.
induction xs; simpl.
- reflexivity.
- destruct (p a); simpl.

+ apply le_n_S.
apply IHxs.

+ apply le_S.
apply IHxs.

Qed.

Properties can be universally quantified over values of a certain type using the keyword
forall. When a tactic yields multiple subgoals, the symbols -, + and * or multiples of
the same symbols can be used to structure the proof.

We begin the proof with intros A xs p. This command moves quantified variables
from the goal, which initially matches the proposition, to the context. Hence, the proof
view now looks as follows.

A : Type
xs : list A
p : A -> bool
============================
length (filter p xs) <= length xs

To further advance the proof, we need more information about xs because both length
and filter pattern match the list argument. For inductive data types like list, the
tactic destruct does a case distinction over the constructors of the passed argument,
where each constructor generates one new subgoal. For non-recursive data types like
bool, this is sufficient. However, proofs over recursive data types like list usually
require structural induction to be able to prove the property. Consequently, we use
induction xs to distinguish empty lists and non-empty lists.

When a semicolon instead of a dot is written between two tactics, the second tactic
is applied to all subgoals that the first one generates. In this case, we want to apply
the tactic simpl to both cases and thus, combine induction xs and simpl with a
semicolon.

The tactic simpl tries to reduce an expression while still maintaining readability. For
example, simpl applies the definition of filter and length because the outermost
constructor of xs has been determined by induction. In the following goal, :: is an

12



2. Preliminaries

infix notation for the cons constructor.

subgoal 1 (ID 63) is:
0 <= 0

subgoal 2 (ID 64) is:
length (if p a then a :: filter p xs else filter p xs)
<= S (length xs)

Natural numbers are represented in Coq as Peano numbers, where S is the successor
constructor and O represents zero. For the first subgoal, which corresponds to the case
xs = nil, the functions on both sides of the inequality have been reduced to 0. Since
<= is a reflexive relation, this goal is solved trivially. In the second subgoal, the definition
of filter and length have been applied once. Additionally, an induction hypothesis
created by the induction tactic is added to the context.

A : Type
a : A
xs : list A
p : A -> bool
IHxs : length (filter p xs) <= length xs
============================
length (if p a then a :: filter p xs else filter p xs)
<= S (length xs)

Again, we need to make a case distinction, but this time over the result of p a. Since
bool is not a recursive type, the tactic destruct applied to p a is sufficient. In case of
p a = true, the new goal is as follows.

S (length (filter p xs)) <= S (length xs)

When compared to the induction hypothesis IHxs, the only difference are the S construc-
tors. Since they can be removed without affecting the inequality, we ask Coq if such
a proposition already exists by means of Search (S _ <= S _), where underscores
represent a wildcard pattern. The result is the following lemma.

le_n_S: forall n m : nat, n <= m -> S n <= S m

The lemma len_n_S states that n <= m implies S n <= S m.
A lemma can be applied with the tactic apply. In general, apply works by matching

the goal against the conclusion c of a lemma of type p1 → · · · → pn → c where p
represent premises. When the matching is successful, a new subgoal for each premise
is generated. Thus, apply “reasons backwards” in the sense that we replace the current
goal with premises, which, if eventually proven, imply that the original goal must hold,
too. In this case, the only premise is n <= m. Therefore, the new goal is identical to the
induction hypothesis, which can be applied with apply, too.

For the second case that corresponds to p a = false, the reasoning is similar to the
first case but with a slightly different lemma. This concludes the proof of the helper
lemma filter_length and allows us to finally begin the termination proofs for Quick-
sort.

13
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Termination Proofs for QuickSort Using the command Next Obligation, we can
begin the first of two termination proofs, where each one corresponds to one recursive
call. The proof context and goal now looks as follows.

y : nat
ys : list nat
============================
length (filter (fun x : nat => Nat.leb x y) ys) < S (length ys)

In the proof context, we have an element y and a list ys of natural numbers. After
simplifying the expression, the goal is to show that a filtered list is smaller than the
length of the original list plus one. Using Coq’s search, we find the following lemma
that allows us to transform the current goal into an inequality over <=.

Lt.le_lt_n_Sm: forall n m : nat, n <= m -> n < S m

Applying the lemma leads to the following goal.

length (filter (fun x : nat => Nat.leb x y) ys) <= length ys

Coincidentally, the remaining goal can be proven directly using the previously defined
helper lemma filter_length.

The second termination proof is identical to the first one because the helper lemma
holds for any predicate, which is the only difference between both recursive calls.

Finally, we have defined the function using Program Fixpoint and two termination
proofs. We can now ask Coq to compute the value of an expression using the com-
mand Compute. Coq’s list notation uses semicolons instead of commas to separate list
elements.

🐔> Compute quicksort [23; 8; 15; 4; 42; 16].
[4; 8; 15; 16; 23; 42] : list nat

2.2.4. Dependent Types

Since Coq is a dependently typed language, it is possible to have values as part of a type.
For example, the following definition represents a list data type – also called vector –
that encodes a list’s length in the type using Peano numbers.

Inductive Vec (A : Type) : nat -> Type :=
| vnil : Vec A 0
| vcons : forall n, A -> Vec A n -> Vec A (S n).

The constructor vnil is a vector of length zero, whereas vcons has an explicit argu-
ment n introduced by forall that represents the length of the vector’s tail. Since the
tail has length n and an element is added, the whole vector has n+ 1 elements, repre-
sented by the successor constructor S.

Using this inductive definition of vectors, we can write a singleton vector of Boolean
values as vcons bool 0 true (vnil bool). When we enable Coq’s inference capa-
bilities as described in subsection 2.2.1, this value can be defined as vcons true vnil.
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As a non-recursive function over vectors, we define a length function as follows.

Definition vlength (A : Type) (n : nat) (xs : Vec A n) : nat := n.

In this case, the length parameter encoded in the vector type is also a parameter of the
function and the result of the function. Although this might seem strange because the
result of the function is a parameter, it makes sense when we consider that parameters,
whose value can be inferred from other arguments, can be omitted.

🐔> Compute vlength (vcons true (vcons true vnil)).
2 : nat

When we enable explicit arguments for vlength and supply a value for n that does
not match the length of the vector, Coq yields a type error.

🐔> Compute @vlength bool 2 (vcons true vnil).
Error: The term "vcons true vnil" has type "Vec bool 1"

while it is expected to have type "Vec bool 2".

As an example of a recursive function, we define the append function for vectors.
Again, there is a type argument and two natural numbers that represent the lengths of
the respective vectors. The encoded length argument allows us to express the invariant
that appending two vectors of length n and m yields a vector with n+m elements.

Fixpoint vapp (A : Type) (n m : nat) (xs : Vec A n) (ys : Vec A m)
: Vec A (n + m) :=
match xs with
| vnil => ys
| vcons z zs => vcons z (vapp zs ys)
end.

As discussed in the previous section, it is not possible to define a function that returns
the head of an ordinary list without a wrapper like option because functions must be
total. However, for dependently typed vectors, it is possible to ensure that the function
is only applied to non-empty vectors.

Functions over dependent types can be tricky to write computationally in some situ-
ations. In the last subsection, the Curry-Howard correspondence and values as proofs
were discussed. In the context of dependent types, the other direction, that is, proofs
as values, is more interesting. Using Coq’s proof mode, we are able to define computa-
tional functions with proof tactics as follows.

Definition vhead (A : Type) (n : nat) (xs : Vec A (S n)) : A.
dependent destruction xs.
apply a.

Defined.

Instead of := at the end of the function head, we end the definition with a dot. Then,
the function is constructed as a proof. In a computational definition, wewould use match
to pattern match for the components of xs. The equivalent proof tactic is destruct,
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which we already used in the last subsection. For dependent types, however, there is a
special tactic called dependent destruction, which considers information like the S
pattern in the length argument of the vector. This allows Coq to infer that only cons
is a suitable pattern for xs and thus, the only generated subgoal is for cons a _. The
resulting proof view is as follows.

A : Type
n : nat
a : A
xs : vlist A n
============================
A

Coq now expects a value of the function’s return type A. Since a : A is in the context,
we can return a with apply a. When the proof is finished with Defined, the function
behaves like any other defined function. Therefore, using proof mode is a viable option
to define functions over dependent types.

2.2.5. Sections and Variables

Coq has a section mechanism that allows introducing local variables. Inside the section,
such variables are always visible and can be omitted as function arguments. For example,
the predefined version of map introduces local variables for the involved types and the
function f, as shown in the following.

Section Map.
Variables (A : Type) (B : Type).
Variable f : A -> B.

Fixpoint map (l:list A) : list B :=
match l with
| [] => []
| a :: t => (f a) :: (map t)

end.
End Map.

Outside of the section, section variables are added as parameters to the types of all def-
initions within the section. Consequently, the function map behaves as expected outside
the section, while the definition inside the section is shorter and there are less potential
obstacles for Coq’s termination checker.
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2.3. Modeling Curry Programs using Monadic Code
Transformation

Modeling Curry programs in a language like Haskell requires a transformation of non-
deterministic code into a semantically equivalent, deterministic program. First, we have
a look at the direct representation of non-determinism used in the KiCS2 implementa-
tion as described by Braßel et al. [2011].

2.3.1. KiCS2 Approach

Non-determinism in Curry is not limited to flat non-determinism but can occur within
components of data structures and anywhere in a computation. This means that ex-
pressing non-determinism via Haskell’s list monad is not sufficient to model Curry’s
non-determinism. Instead, existing data types receive additional constructors that rep-
resent failure and the choice between two values. For example, the extended list data
type looks as follows.

data List a = Nil
| Cons a (List a)
| Choice (List a) (List a)
| Fail

Since this transformation adds new constructors, all functions need to cover these cases,
too. The new rules return Fail if the function’s argument is a failed computation and
distribute function calls to both branches if the argument is a choice. This so-called
pull-tab transformation is described by Alqaddoumi et al. [2010].

One issue with this approach is that call-time choice is not implemented yet. If
a choice is duplicated during evaluation, this information cannot be recovered later.
Therefore, each Choice constructor needs an additional ID argument that identifies the
same choices. Since each choice requires a fresh ID, functions that create choices have
an additional IDSupply argument that is used to generate new IDs.

The evaluation of a non-deterministic value is implemented by transforming the value
into a search tree, which can then be traversed with different search strategies. In the
process, the decision for each choice is stored and then repeated accordingly if the same
ID is encountered again.

While this approach is useful when the host language supports non-strictness and
sharing, another approach is necessary to model these effects when this is not the case.

2.3.2. Modeling Non-Strictness and Sharing

Fischer et al. [2009] introduce a monadic representation of non-determinism that sup-
ports sharing and non-strict evaluation. Out of simplicity, the idea is presented in
Haskell, similar to the approach of the original authors. Before the actual implementa-
tion is discussed, we have a look at a naive approach to motivate the usage of monadic
liftings.
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As an example of an algorithm that uses non-determinism in combination with shar-
ing, we have a look at permutation sort. The idea is to non-deterministically generate
permutations until a permutation is sorted and then return the sorted permutation.

The algorithm consists of three components: Firstly, a function insert that inserts
an element non-deterministically at every possible position within a list.

insert :: MonadPlus m => a -> [a] -> m [a]
insert x xs = return (x:xs)

`mplus` case xs of
[] -> mzero
(y:ys) -> do zs <- insert x ys

return (y:zs)

The second part is a function perm that inserts the head of a given list into the permu-
tations of the list’s tail.

perm :: MonadPlus m => [a] -> m [a]
perm [] = return []
perm (x:xs) = do ys <- perm xs

zs <- insert x ys
return zs

Lastly, the function sort generates permutations and then tests whether they are sorted.

sort :: MonadPlus m => [Int] -> m [Int]
sort xs = do ys <- perm xs

guard (isSorted ys)
return ys

The function isSorted compares each element in a list to the next one in order to
determine whether the list is sorted.

When testing the performance of the implementation, we can see that the runtime
increases significantly when adding even a few elements.5

λ> sort [9, 8..1] :: [[Int]]
[[1,2,3,4,5,6,7,8,9]]
(0.69 secs)
λ> sort [10, 9..1] :: [[Int]]
[[1,2,3,4,5,6,7,8,9,10]]
(6.67 secs)
λ> sort [11, 10..1] :: [[Int]]
[[1,2,3,4,5,6,7,8,9,10,11]]
(77.54 secs)

The reason for the factorial runtime is that the implementation is needlessly strict. A
list of length n has n! permutations, all of which are generated when running sort. This
matches our observation above, since adding a tenth element increases the runtime by
a factor of 10 and an eleventh element multiplies the runtime of the algorithm for a ten-
5The results were measured using the :set +s option of ghci, version 8.4.3. Although the code runs
faster with optimizations, the runtime complexity does not change.
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element list by eleven.
When we consider the implementation of isSorted, we can see that, as soon as the

comparison of two elements yields False, the function returns False. Furthermore,
the remainder of the list is not evaluated.

isSorted :: [Int] -> Bool
isSorted (x:y:zs) = (x <= y) && isSorted (y:zs)
isSorted _ = True

However, since we use bind to pass permutations from perm to isSorted, each permu-
tation is fully evaluated before it is determined whether the permutation is sorted. This
leads to the complete evaluation of every permutation, which results in an inefficient
program.

Similarly, when we consider the Curry example head (1 : head [] : []), the
strictness of our MonadPlus approach shows again. The corresponding Haskell expres-
sion is as follows.

hd [] >>= \x -> hd (1 : x : [])

Here hd :: MonadPlus a => [a] -> m a is the lifted head function. Evaluating the
expression in Haskell yields mzero, that is, no result, while Curry returns 1. The reason
is the definition of the bind operator. For example, the monad instance for lists defines
bind as xs >>= f = concatMap f xs. In the expression above, this means that the
pattern matching within concatMap evaluates hd [] to mzero and thus returns mzero.
The strictness observed in both examples is the motivation for an alternative approach.

The problem with the above implementation is that non-deterministic arguments of
constructors need to be evaluated completely before the computation can continue.
Therefore, we would like to be able to use unevaluated, non-deterministic computa-
tions as arguments of constructors.

As mentioned before, we can implement this idea by adapting all data types so that
they may contain non-deterministic components.

data List m a = Nil | Cons (m a) (m (List m a))

The list data type now has an additional argument m of kind * -> * that represents
a non-determinism monad. Instead of a fixed constructor like Choice, which was dis-
cussed as part of the KiCS2 approach in subsection 2.3.1, the monad m determines the
structure and evaluation strategy of the non-determinism effect.

Two smart constructors cons and nil make handling the new list type more conve-
nient.

nil :: Monad m => m (List m a)
nil = return Nil

cons :: Monad m => m a -> m (List m a) -> m (List m a)
cons x y = return (Cons x y)
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Adapting the permutation sort functions to the lifted data type requires us to replace
the type [] with List m. However, this is not sufficient because the list itself can be
the result of a non-deterministic computation. Therefore, an additional m is wrapped
around every occurrence of List.

insert' :: MonadPlus m => m a -> m (List m a) -> m (List m a)
insert' mx mxs = cons mx mxs

`mplus` mxs >>= \xs -> case xs of
Nil -> mzero
Cons my mys -> cons my (insert' mx mys)

perm' :: MonadPlus m => m (List m a) -> m (List m a)
perm' ml = ml >>= \l ->

case l of
Nil -> nil
Cons mx mxs -> insert' mx (perm' mxs)

Whenever pattern matching occurred in the original definition, we now use bind
to extract a List value. Since this only evaluates flat non-determinism and not non-
determinism that occurs in the components, non-strictness is upheld as much as possi-
ble.

As a result of the monadic transformation, all functions now take arguments of the
same type they return. Thus, the definition of sort does not need bind in order to pass
permutations to isSorted.

sort' :: MonadPlus m => m (List m Int) -> m (List m Int)
sort' xs = let ys = perm' xs in

isSorted' ys >>= \sorted -> guard sorted >> ys

We are now able to take advantage of isSorted’s non-strict definition. The implemen-
tation generates permutations only if there is a chance that the permutation is sorted,
that is, only recursive calls of perm that are demanded by isSorted are executed.

We reconsider the Curry example head (1 : head [] : []). Since the List data
type now takes monad values as arguments, we can write the example using the smart
constructors and a lifted head function hdM as follows.

λ> hdM (cons (return 1) (cons (hdM nil) nil))
1

Because we do not need to use bind to get the result of hdM nil, the expression is not
evaluated due to non-strictness and the result is equal to Curry’s output. Data types
with non-deterministic components solve the problem of non-strictness because each
component can be evaluated individually, instead of forcing the evaluation of the whole
term. Unfortunately, this leads to a problem. When unevaluated components are shared
via Haskell’s built-in sharing, computations, rather than results, are being shared. This
means that the results can be different each time the computation is evaluated, which
contradicts the intuition of sharing. Consequently, this implementation of the algorithm
no longer returns only sorted lists.
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One approach that solves the problem mentioned above uses an explicit sharing com-
binator share :: m a -> m (m a) that allows sharing the results of a computation
in a non-strict way. Here, m is a MonadPlus instance similar to the monad used in the
definition of the data type. Thus, share takes a computation and then returns a com-
putation that returns the result, that is, the shared value. The reason for this nesting
of monad layers is that, in short, the share combinator performs some actions that can
be immediately executed by bind (the outer monad layer), while the inner monad layer
should only be evaluated when needed. This is explained in more detail later.

With the explicit sharing operator, we can adapt perm' to explicitly share the gener-
ated permutations, which results in non-strictness combined with sharing.

sort' :: MonadPlus m => m (List m Int) -> m (List m Int)
sort' xs = do ys <- share (perm' xs)

sorted <- isSorted' ys
guard sorted
ys

Based on this idea of an explicit sharing operator, we can now begin modeling call-
time choice. We first discuss a Haskell implementation, which is later formalized in Coq.
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Call-Time Choice Modeled in Haskell

The first model of call-time choice is implemented in Haskell due to the freedom and
flexibility that Haskell’s type system allows. Although the ultimate goal is to create the
model in Coq, so that it can be formally reasoned about, Haskell is better suited when
it comes to experimenting with different approaches.

In this chapter, we first discuss a technique to model effectful programs. Based on this,
we then define syntax for programs with non-determinism and stateful computations,
as well as infrastructure that allows convenient pattern matching and combining effects.
Using effect handlers, we then give our programs semantics. Beginning with scoped
effects in general, we finally discuss the sharing effect and its different aspects. The
chapter is then concluded with two examples of more complex algorithms that share
non-deterministic choices.

Based on the idea of an explicit sharing operator from the previous chapter, we can
now begin to model call-time choice, that is, non-strictness, sharing and non-determi-
nism. Similar to the implementation of Fischer et al. [2009], we parameterize all def-
initions with MonadPlus instead of using a static monad. This allows us, for example,
to define a test suite that works with any implementation just by adapting the imported
module. Similarly, we do not restrict the implementation to the effects that make up
call-time choice. Instead, we define an effect representation that can express many dif-
ferent effects, including non-determinism and sharing. This approach, as introduced by
Wu et al. [2014], will also be the base of the Coq implementation shown in chapter 4.

For the implementation of call-time choice, we need to be able to express different
effects within a program. However, not every program contains effects. There are also
pure programs that have no side-effects and only compute a value. A data type that
represents such programs could look as follows.

data VoidProg a = Return a

Here Void means the absence of effects. Since the data type has only one constructor
that always holds one value, this type represents purely computational programs. When
we consider programs that additionally contain effects like non-determinism, also called
impure programs, a corresponding data type could look like the following.

22



3. Call-Time Choice Modeled in Haskell

data NDProg a = Return a
| Fail
| Choice (NDProg a) (NDProg a)

This data type also has a constructor to model pure values, but in addition, there are
constructors that represent failed computations and the non-deterministic choice be-
tween two values. We could define more independent data types that model different
effects but the question arises: Is it possible to create an abstract data type that models
effectful programs, that is, if appropriately instantiated, behaves like the original effect
functor? This would allow us to represent programs with many different effects by us-
ing one compact representation.

Answering this question requires abstracting the concrete form of effect functors into
a general program data type. As we saw in the examples above, we need a way to
represent pure values in a program. Therefore, the first constructor of our new program
data type should be Return a for the type a, that is, the result type of the program.

To model effects like non-determinism, the program type needs to be parameterized
over effect functors of kind * -> *. We call this argument sig because the signature
tells us which effects can occur within a program. So far, programs are defined as data
Prog sig a = Return a.

In order do make use of the sig argument, we need to add a constructor for impure
operations. The NDProg data type shows us that effect functors can be defined recur-
sively. Thus, the constructor for impure programs should be recursive, too, to be able to
represent this structure.

data Prog sig a = Return a | Op (sig (Prog sig a))

With this definition of Prog, we are able to represent the original functors by instanti-
ating sig appropriately. For VoidProg, we already have the Return constructor as part
of Prog. Therefore, the type that we apply Prog to does not need another Return con-
structor. Consequently, the type is empty, written as data Void p. Applying Prog to
Void results in the following type.

VoidProg' a = Return a
| Op (Void' (VoidProg a)) -- Void' has no constructors!

The type Prog Void now resembles the original type VoidProg, since the Op con-
structor would require a value of type Void, which we cannot construct.1 Only Return
can be used to define values, like in the original data type.

Similar to Void, we can define a data type ND that represents NDProg in combination
with Prog.

data ND p = Fail | Choice p p

Again, we can omit the Return constructor because it is already part of the Prog data
type. The type variable a has been renamed to p since ND does not have values as

1It is possible to use undefined to create an impure value of type Prog Void a. Since this is not
possible in Coq, we do not consider this in the Haskell implementation.
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arguments but rather programs that return values. When we specialize Prog with ND,
we can see that the argument of ND is the type for non-deterministic programs.

data NDProg' a = Return a
| Op (ND (NDProg' a))

Inlining ND yields the following type, which is equivalent to the original data type.

data NDProg' a = Return a
| OpFail
| OpChoice (NDProg' a) (NDProg' a)

We have found a way to model effect functors as instances of the data type Prog,
which essentially models a leaf-labeled tree. As an example, Figure 3.1 shows the Curry
expression 0 ? (failed ? 1) represented as a Prog tree.

Op

Choice

Return

0

Op

Choice

Op

Fail

Return

1

Figure 3.1.: Tree Structure of a Non-Deterministic Program

The structure of the nodes and the degree of branching is determined by sig. In case
of ND, we have zero and two branches for Fail and Choice, respectively. Leaves are
represented by either the Return constructor or a constructor of sig without Prog
arguments like Fail.

3.1. Free Monad

The data type Prog is better known as the free monad, which is defined as follows.

data Free f a = Pure a | Impure (f (Free f a))
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Besides differently named constructors, the definition is identical to the type Prog.
When the free monad is applied to a functor f, the resulting type is a “free” monad. This
is very useful for modeling effectful programs because it allows us to combine syntax
using the do notation.

As an example of a monad generated by Free, we consider the type data One a =
One. Here the type variable a is a phantom type that we need because Free expects
a functor argument. To understand how Free turns functors into monads, we have a
look at the monad instance for Free.

instance (Functor f) => Monad (Free f) where
return = Pure

Pure x >>= g = g x
Impure fx >>= g = Impure (fmap (>>= g) fx)

Values are lifted into the free monad using Pure. When bind encounters a pure value,
the function g is applied to the argument of Pure. For impure values, the function
g is distributed deeper into the term structure using fmap. In the case of One, there is
only a single, non-recursive constructor One and thus, the only possible impure value
is Impure One. Since fmap One = One, we apply the function argument of bind only
to pure values and return Impure One otherwise. This reminds of the Maybe monad,
whose bind definition and data type are similar. Thus, the free monad generated by
Free One is the Maybe monad.

Since we want to model different effects in our program, the free monad makes writ-
ing programs easier by allowing monadic definitions without defining a separate monad
instance for each effect. Although this would be possible, Kammar et al. [2013] argue
that this approach makes it necessary to write monad transformers to combine effects.
This entails that the order of effects is static and requires explicit lift operations. Fur-
thermore, it is not guaranteed that stacked monads yield a monad again.

In our model, we can combine different effect functors into a new combination func-
tor, which is then turned into a monad. Since this approach also allows effortlessly re-
ordering the effect stack, Free is the core data structure of the effect model presented
in the next section.

3.2. Modeling Effects

In the previous sections the free monad and its ability to represent effect functors was
discussed. The goal of this section is to explore the infrastructure that allows us to com-
binemultiple effects, write effectful programs and compute the results of such programs.

3.2.1. Combining Effects

Firstly, we would like to combine multiple effects. For this purpose, we use the technique
introduced by Swierstra [2008] to define a data type that combines the effect functors
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sig1 and sig2. The infix notation :+: simplifies combining multiple effects via nested
applications.

data (sig1 :+: sig2) a = Inl (sig1 a) | Inr (sig2 a)

For the purpose of demonstrating how effects are combined with :+:, we split the non-
determinism data type ND into the separate effects Choice and Fail.

data Choice p = Choice p p
data Fail p = Fail

Based on these definitions, the type Choice :+: Fail is a functor which we can use
with Prog to define programs that contain choices and failed computations as follows.

progCF :: Prog (Choice :+: Fail) Int
progCF = Op (Inl (Choice (Op (Inr Fail)) (Return 42)))

In the example progCFwe define a program that represents the non-deterministic choice
between a program that failed and a program that returns 42.

The complexity of nesting constructors of Prog and :+: increases quickly for bigger
terms. Therefore, we define a type class that allows us to write such expressions more
conveniently. The class is parameterized over two functors, one of which is a subtype
regarding :+: of the other.

class (Functor sub, Functor sup) => sub :<: sup where
inj :: sub a -> sup a

Additionally, we need a few instances of the class :<: to make it useful. The simplest
case is sig :<: sig, where we want to inject sig into itself.

instance Functor sig => sig :<: sig where
inj = id

Since we do not need to modify values for this purpose, id is used to define inj.
The next instance covers the case of a subtype that is contained in the left component

of a sum.

instance (Functor s1, Functor s2) => s1 :<: (s1 :+: s2) where
inj = Inl

Since we already know that s1 is part of the sum type, we only need to apply the correct
constructor of :+:, that is, Inl because s1 is the left argument of the sum type.

The last instance assumes that we can inject s into s2 and describes how we can inject
s into s1 :+: s2.

instance (Functor s1, s :<: s2) => s :<: (s1 :+: s2) where
inj = Inr . inj

In this case, we can use inj to receive a value of type s2 a. All that remains is a situation
similar to the previous instance, where we only need to use the matching constructor to

26



3. Call-Time Choice Modeled in Haskell

complete the injection.
These instances allow us to write a polymorphic definition of the function inject

which injects constructors depending on the given type of the program.

inject :: sig1 :<: sig2 => sig1 (Prog sig2 a) -> Prog sig2 a
inject = Op . inj

The function inject can then be used as demonstrated in the following example.

λ> inject Fail :: Prog (Fail :+: Choice) a
Op (Inl Fail)
λ> inject Fail :: Prog (Choice :+: Fail) a
Op (Inr Fail)

The implementation of the function inject assumes that we can inject sig1 into
sig2. This is because sig2 is the signature of the returned program and sig1 is the type
of the effect constructor that we want to inject. This restriction is reasonable because, for
example, non-deterministic syntax should only appear in a program where ND is part of
the signature.

With this part of the infrastructure in place, we can redefine the example progCF
without using Inl and Inr explicitly.

progCF' :: Prog (Choice :+: Fail) Int
progCF' = inject (Choice (inject Fail) (Return 42))

Deriving the appropriate instance of :<: when using inject is, however, not always
unambiguous. The last two instances overlap in situations where sig = sig1. For
example, the definition fail = inject Fail :: Prog (Fail :+: Fail) a yields
different values with respect to the chosen constructor of :<:, depending on the in-
stance.

λ> fail
Op (Inl Fail) -- second instance
λ> fail
Op (Inr Fail) -- third instance

This is because the type constraint of inject, in this case Fail :<: (Fail :+: Fail),
matches both the second and third instance. Haskell does not accept overlapping in-
stances by default, which is why we prioritize one instance via pragmas. In practice,
the different term structure due to Inl and Inr does not influence the evaluation as
long as we do not explicitly match for the constructors. This is ensured by an additional
function prj of the type class :<:, which is discussed in the next section.

3.2.2. Simplified Pattern Matching

While the function inject allows us to write programs in a more convenient way, we
also need to consider how we can evaluate programs. The same issue of nested appli-
cations of Op, Inl and Inr applies when we want to distinguish different effects via
pattern matching. Thus, we add a second function prj to the type class :<:.
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class (Functor sub, Functor sup) => sub <: sup where
inj :: sub a -> sup a
prj :: sup a -> Maybe (sub a)

The function prj is a partial inverse to inj. This means that we project values of
a type sup a into a subtype sub a. For this reason, the return type of the function
is a Maybe type. Similar to inj, instances for the same cases as before have to be
defined. Due to the similarity to inj, the definitions are omitted here but can be found
in subsection A.2.1.

With the definition of prj and the instances of :<:, we can now define the function
project which we can use to make pattern matching more convenient.

project :: (sub :<: sup) => Prog sup a -> Maybe (sub (Prog sup a))
project (Op s) = prj s
project _ = Nothing

Due to the recursive definition of the Prog data type, constructors like Choice have
Prog arguments themselves. Thus, sub is applied to Prog sup a in the return type
of the projection. The pattern for Return is not matched because we can only project
effectful values. Generally, it is not clear which functor we should choose for sub when
projecting a Return value.

Finally, we can now inject and project effectful values. Since project is a partial
inverse of inject, the equation project (inject x) = Just x holds for values x of
appropriate type. This is demonstrated in the following example.

λ> type T = Maybe (Choice (Prog (Choice :+: Fail) Int))
λ> project (inject (Choice (Return 42) (Return 43))) :: T
Just (Choice (Return 42) (Return 43))

Now that we can use project as an abstraction of the concrete term structure regard-
ing :<:, we can write a first function that evaluates a non-deterministic program.

evalCF :: Prog (Choice :+: Fail) a -> [a]
evalCF (Return x) = [x]
evalCF p = case project p of

Just (Choice p1 p2) -> evalCF p1 ++ evalCF p2
Nothing -> case project p of

Just Fail -> []
Nothing -> []

When evalCF encounters a value Return x, x is returned as a singleton list. For effect-
ful programs, we can use project to distinguish between the constructors of one effect
at a time. The case patterns hold the necessary type information for project. When
the projection returns Nothing, another effect can be matched in a nested case expres-
sion. Since we never need to explicitly match for Inl or Inr, overlapping patterns in
the instances of :<: do not affect the evaluation of programs in our model.

Although we have already eliminated Inl, Inr and Op from functions that create and
evaluate programs, programming with effects can be simplified even more. Two lan-

28



3. Call-Time Choice Modeled in Haskell

guage extensions, PatternSynonyms and ViewPatterns, allow us to write definitions
like the following.

pattern PChoice p q <- (project -> Just (Choice p q))

View patterns – the pattern that follows after the arrow pointing left – make pattern-
matching for certain cases more compact. A view pattern consists of a function on the
left-hand side of -> that is applied to the value that the pattern is matched against, and
a pattern on the right-hand side. The result of the function call is matched against this
pattern and the variables inside the pattern can be used in the definition.

The function evalCD can be defined using view patterns in the following way.

evalCF' :: Prog (Choice :+: Fail) a -> [a]
evalCF' (Return x) = [x]
evalCF' (project -> Just (Choice p1 p2)) = evalCF' p1 ++ evalCF' p2
evalCF' (project -> Just Fail ) = []

We cannot use (project -> Nothing) without type annotations as a pattern because
this would result in overlapping instances. However, no effects other than those specified
in the signature can occur within the program. Therefore, the Nothing pattern is not
necessary.

The second component of the pattern definition above is the ability to define a syn-
onym for more complex patterns. In this case, we name the view patterns similar to the
original constructors of the effects. While this is necessary for every effect constructor,
it allows us to rewrite the definition in the following way.

evalCF'' :: Prog (ND :+: One) a -> [a]
evalCF'' (Return x) = [x]
evalCF'' (PChoice p q) = evalCF'' p ++ evalCF'' q
evalCF'' (PFail ) = []

Writing programs that evaluate effectful programs is now almost as convenient as ordi-
nary pattern matching.

As a last simplification, the following definition is useful for working with programs
of the signature f :+: g, where want to match for f but not g.

pattern Other s = Op (Inr s)

Since :+: is right-associative in nested applications, we can match for the left argument
effect and conveniently match all remaining effects with Other. This is particularly
useful for functions that handle effects, which are described in the next subsection.

3.2.3. Effect Handlers

For each effect in a program’s signature, a handler is required. Handling an effect means
transforming a program that contains a certain effect into a program where the effect’s
syntax does not occur anymore. However, the syntax is not just removed, but the effect’s
semantics is applied. The semantics of an effect is therefore given by its handler.
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In the following we discuss handlers for the effects non-determinism and state, as well
as a “handler” for Void.

Void Effect We begin with the data type for absence of effects, Void.

run :: Prog Void a -> a
run (Return x) = x

Due to its definition without constructors, there is no Void syntax that needs to be
handled. The only constructor for programs with the signature Void is Return, which
we can handle by returning the argument. Thus, the handler for Void removes the
program layer and is usually applied last, when all other effects have been handled.

Non-Determinism Effect We have already defined a data type for non-deterministic
programs in chapter 3. The Choice constructor did not contain any IDs, however, which
we need for the implementation of call-time choice. Thus, the revised data type is as
follows.

data ND p = Fail' | Choice' (Maybe ID) p p

Not every non-deterministic choice in a program needs an ID, since IDs slow down the
evaluation of choices considerably. Thus, IDs are wrapped in Maybe and only assigned
when necessary, that is, when choices are shared.

In the last section, we already defined a function evalCF that handles a simple non-
determinism effect without IDs by returning a list of results. For each choice, the result
lists were simply concatenated. For choices with IDs, however, this is not sufficient.

We begin by transforming the program into a program that returns a tree. Tree
has the same structure as ND and is only used as an abstraction layer that allows us to
define, for example, different search strategies independently from the non-determinism
handler.

runND :: (Functor sig)
=> Prog (ND :+: sig) a -> Prog sig (Tree.Tree a)

runND (Return a) = return (Tree.Leaf a)
runND Fail = return Tree.Failed
runND (Choice m p q ) = do

pt <- runND p
qt <- runND q
return (Tree.Choice m pt qt)

runND (Other op) = Op (fmap runND op)

Next, we need to memorize the decisions that were made while traversing the choice
tree. For this reason, we define a data type Decision that indicates whether the left or
right branch of a choice has been picked for a particular choice ID. A Memo maps IDs to
decisions.

data Decision = L | R
type Memo = Map.Map ID Decision
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Based on Decision and Memo, we can implement depth-first traversal of the choice
tree in the function dfs.

dfs :: Memo -> Tree a -> [a]
dfs mem Failed = []
dfs mem (Leaf x) = [x]
dfs mem (Choice Nothing t1 t2) = dfs mem t1 ++ dfs mem t2
dfs mem (Choice (Just n) t1 t2) =

case Map.lookup n mem of
Nothing -> dfs (Map.insert n L mem) t1

++ dfs (Map.insert n R mem) t2
Just L -> dfs mem t1
Just R -> dfs mem t2

The returned list of results is created similar to the approach in evalCF, except for the
case where a choice has a non-empty ID. The ID could have appeared before in a choice
that is closer to the root node of the tree and thus, the choice could have already been
decided. Therefore, we need to look up the ID in the Memo. If the choice has not been
made yet, that is, Nothing is returned, the Memo is updated with L for the left branch
and R for the right branch. The recursive calls then descend into the corresponding
branch and make the same decision for this ID if it occurs again. If, on the other hand,
a decision is returned by the lookup function, the branch of the recursive call is chosen
according to the decision.

The function dfs is called with an empty map and yields the list of results that the
choice tree represents. For example, the following tree represents the Curry expression
let x = 0 ? 1 in x + x where the choice within x is shared and thus, has the same
ID in every occurrence.

Choice (Just 0) (Choice (Just 0) (Leaf 0) (Leaf 1))
(Choice (Just 0) (Leaf 1) (Leaf 2))

When dfs is called with Map.empty and the above tree, the result is [0, 2] because the
decision for the ID 0 is memorized and repeated when the ID is encountered a second
time.

State Effect Stateful computations are an important part of the sharing effect that is
presented in section 3.3. We begin by defining the syntax of the state effect.

Usually, stateful computations can read the current state with get and set a new state
with put. Thus, the data type needs those two constructors, too. We add an additional
type variable s that abstracts the type of values that the state can hold. The variable p
represents the program type as before.

data State s p = Get' (s -> p)
| Put' s p

Both constructors have an effect on a remaining program. Consequently, both con-
structors need a program argument p. For Put', we can simply add the arguments s for
the new state and p for the program in which the new state is set. The constructor Get',
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however, contains the program in a different form, namely a function s -> p. The rea-
son for this is that, if we were using a simple p argument, the handler would have to
somehow replace all get-occurrences of the state with appropriate values. This would
require evaluating the whole program, which would defeat the purpose of preserving
non-strictness. Hence, the program is added to get in the form of a continuation where
the argument represents the occurrences of the state that are being read in the program.

The smart constructors for stateful programs are defined by instantiating the program
and function arguments appropriately.

get :: (State s :<: sig) => Prog sig s
get = inject (Get' return)

put :: (State s :<: sig) => s -> Prog sig ()
put s = inject (Put' s (return ())

For get, this means that we need to supply a function of type s -> Prog sig s since
p is Prog sig s in this context. Conveniently, the return function matches this type
and thus, is the initial argument of Get'. For put, the new state and a program that
returns () are supplied to Put' because put does not return other information.

The choice of initial function arguments might not seem intuitive at first because it is
not clear how the remaining program finds its way into the argument of, for example,
Get'. Therefore, we consider an example of the state effect and how the free monad is
used to write programs.

p :: Prog (State Int :+: Void) Int
p = do put 8

i <- get
return (i * 2)

The program sets a state 8, gets the value of the current state and then returns double
of that. The normal form of p can be computed by evaluating the occurrences of bind.
We recall the monad instance for the free monad from section 3.1: bind uses fmap to
distribute a function deeper into a term. Thus, we first define a Functor instance.

instance Functor (State s) where
fmap f (Get' g) = Get' (f . g)
fmap f (Put' s p) = Put' s (f p)

In the case of Get', we need to apply g to a state in order to obtain a program that we
can apply f to. Thus, we pass the result from f to g via function composition. For Put',
the state s remains unmodified and the function f is applied to the program argument
p of the constructor.

Now we can transform the program p into normal form as follows.

put 8 >>= \_ -> get >>= \i -> return (i * 2)
= inject $ fmap (>>= \_ -> get >>= \i -> return (i * 2)) (Put' 8 (return ()))
= inject $ Put' 8 (get >>= \i -> return (i * 2))
= inject $ Put' 8 (inject $ fmap (>>= \i -> return (i * 2)) (Get' return))
= inject $ Put' 8 (inject $ (Get' (\i -> return (i * 2))))
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Op, as well as Inl and Inr constructors, are replaced by inject in this example. The
expression is transformed by applying the definitions of bind and fmap. In the last step,
we simplify the expression by applying the left identity monad law, that is, (>>= f) .
return = f.

We can now see that the remaining program after get, that is, the return call, has
been moved into the argument function of Get'. The function expects a state and
replaces the variables – which were bound to the return value of get in the original
program – with the state.

Now that we have seen the definition of stateful program syntax and how the state
flows through the program via functions, we can define the handler for the state effect.

Naturally, the handler needs to keep track of the current state, which is the first argu-
ment of the function. Then, the function expects a program that contains state syntax.
Finally, the return type is a program that returns a pair of the current state and a return
value.

runState :: Functor sig
=> s -> Prog (State s :+: sig) a -> Prog sig (s, a)

runState s (Return a) = return (s, a)
runState s (Get k) = runState s (k s)
runState s (Put s' k) = runState s' k
runState s (Other op) = Op (fmap (runState s) op)

For a pure value, a pair of the current state and the value inside the Return constructor
is returned. When a Get constructor is encountered, we apply the function argument,
which expects a state, to the current state and do a recursive call with the resulting
program. Put is handled by a recursive call where the old state is replaced by the new
state, while the program stays the same. Finally, other syntax is handled by using fmap
to distribute the handler deeper into the term structure, similar to the other handlers
we have seen.

The example program p can now be handled by first calling the handler runState to
handle the state effect, followed by run to extract the result from the program structure.

λ> run . runState 1 $ p
(8,16)

As expected, the first component represents the current state, which was set by put
to 8, while the second component is the result that was returned after multiplying the
current state by two.

3.2.4. Handling Order

When multiple effects are part of the signature, the question arises whether running
handlers in a different order has an effect on the result. As an example, we define a
handler that does not remove syntax but actually adds state syntax to a non-deterministic
program. The function results keeps the structure of a program intact but adds state
syntax that increments the current state by one for each result.
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results :: (ND :<: s, State Int :<: s) => Prog s a -> Prog s a
results (Return x) = get >>= put . (+ 1) >> return x
results Fail = fail
results (Choice m p q ) = choiceID m (results p) (results q)
results (Op op) = Op (fmap results op)

Now we define a program tree that builds the complete, binary choice tree of height x.

tree :: (ND <: sig) => Int -> Prog sig Int
tree 0 = return 0
tree x = tree (x - 1) >>= \i ->

choice (return $ i + 1) (return $ i - 1)

For each call of tree, a choice is made where the current height is either incremented or
decremented by one. Each time choice is called, two new branches are created. Thus, we
expect tree x to have 2x results. To see the program in action, we define two handlers.

treeGlobal :: (Int, Tree.Tree Int)
treeGlobal = run . runState 0 . runND . results $ tree 2

treeLocal :: Tree.Tree (Int, Int)
treeLocal = run . runND . runState 0 . results $ tree 2

The difference between treeGlobal and treeLocal is the order of the handlers. In
both cases results is run first, but whereas treeGlobal runs the non-determinism
handler before the state handler, the opposite is true for treeLocal.

The types of the definitions already indicate a difference. While treeGlobal returns
a state paired with a tree of results, treeLocal returns a tree of state and result pairs. In
the following, the result of evaluating each handler chain is presented as a visualization
of the resulting choice tree.

λ> putStrLn . pretty $ treeGlobal
(4,?

├─── ?
│ ├─── 2
│ └─── 0
└─── ?

├─── 0
└─── -2)

λ> putStrLn . pretty $ treeLocal
?
├─── ?
│ ├─── (1,2)
│ └─── (1,0)
└─── ?

├─── (1,0)
└─── (1,-2)

As the name suggests, treeGlobal, that is, handling non-determinism first and state
second, evaluates the program with a global state, where each non-deterministic branch
shares the same state. Thus, the single state result is 4 because there are four values in
the choice tree. Contrary to that, treeLocal creates an individual state for every non-
deterministic branch by handling state syntax first. Since each branch can only have
one result, each branch has 1 as its final state.

While the values at the leaves of the tree are not influenced by the order of handlers
in this case, this is not generally the case.
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3.3. Scoped Effects

Although Haskell offers sharing as part of the language, we have seen in subsection 2.3.2
that the built-in sharing mechanism does not always work as intended when combined
with lifted data types. Thus, we need to model sharing as effect using the tools that were
presented in the previous section. There is, however, a difference between sharing and
the other effects we have seen so far. Sharing is not an independent effect since it affects
non-deterministic choices. This means that, depending on the presence of sharing, some
choice branches may not be explored. Therefore, sharing is a scoped effect, that is, only
a delimited part of the program is affected by the effect.

Wu et al. [2014] present twoways to define scoped effects. Firstly, syntax for explicitly
marking the begin and end of a scope can be defined. This leads to a more complicated
handler because the begin and end tags can be mismatched in the program and one
needs to keep track of the current scope environment.

The second approach uses higher-order syntax, that is, the signature of a program
is not just a functor but a type constructor that takes a functor as an argument. This
approach makes it possible to have the scoped program as an argument of the syntax
constructor. In the following, an overview of an – initially promising but ultimately
incorrect – hybrid approach and both options mentioned before is given.

3.3.1. Hybrid Implementation

The idea of the hybrid implementation is a combination of the explicit scoping infras-
tructure and direct program arguments in the syntax definition that the higher-order
implementation uses. At first glance, this has the benefit of simple handlers and scop-
ing via program arguments instead of explicit tags. Therefore, it seemed worthwhile to
explore this approach instead of following one of the options mentioned in the introduc-
tion of the section.

Beginning with the definition of the sharing syntax data type, we follow the idea
of the higher-order approach and define a single constructor Share' with a program
argument p that represents the shared program.

data Share p = Share' p

share :: (Share :<: sig) => Prog sig a -> Prog sig (Prog sig a)
share p = return $ inject (Share' p)

Although p is supposed to be only the shared program, the monadic bind structure
moves the program that follows the Share' constructor into the argument p. The same
happened in subsection 3.2.3 for the program argument of the state effect constructor
put.

The return type of share is not just a program but a program that returns a program.
The reason for this is explained later in section 3.4. For the first implementation of
share, this outer program layer is empty and thus created by return.

In order to create an example that shows the usage of share and the monadic struc-
ture, we need a few definitions. Firstly, we define a non-deterministic coin that returns
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either 0 or 1 and a lifted addition function for programs that return integer results. Since
(+) is a strict function in Haskell and Curry, we can mirror this behavior by binding both
program arguments and then adding the results.

coin :: (ND :<: sig) => Prog sig Int
coin = choice (return 0) (return 1)

addM :: (Functor sig) => Prog sig Int -> Prog sig Int -> Prog sig Int
addM p q = do

i <- p
j <- q
return (i + j)

With these functions defined, we can now use the share operator to add a shared coin
to an unshared coin, twice, as shown in the following example. This corresponds to the
Curry code let x = coin in (x + coin) + (x + coin).

exAddSharedCoinTwice :: Prog (Share :+: ND :+: Void) Int
exAddSharedCoinTwice = share coin >>= \fx -> addM (addM fx coin)

(addM fx coin)

In the following tree visualization of this example, angled brackets represent sharing
scopes and subscript numbers denote the ID of a choice.

< ?1
├── ?2
│ ├── < ?1
│ │ ├── ?2
│ │ │ ├── 0 > >
│ │ │ └── 1 > >
. . └── ?2
. . ├── 1 > >
. . └── 2 > >

Hybrid implementation

< ?1
├── > ?
│ ├── < ?1
│ │ ├── > ?
│ │ │ ├── 0
│ │ │ └── 1
. . └── > ?
. . ├── 1
. . └── 2

Explicit scoping tags

The left-hand side tree is generated using the data type Share with a single construc-
tor, while the right-hand side visualizes a data type with two constructors that explicitly
delimit the scope. Although this information is added by a sharing handler, whose func-
tionality has not been discussed yet, the choice IDs are important in order to understand
the consequences of the data type definitions for the sharing effect.

Choice IDs are assigned inside a sharing scope. When a sharing scope is duplicated
due to the monadic structure, the choices inside are assigned the same IDs. Finally,
when the choice tree is evaluated, these choices are linked.

The right-hand side tree shows that explicit scoping tags allow ending a scope in a
program. For example, the scope around the root choice ends first and then the next
scope is opened. The visualization of the hybrid term shows that all opened sharing
scopes are only closed at the end of each branch. This difference in term structure means
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that the handler for the hybrid approach never stops assigning IDs to choices because it
cannot distinguish the shared program that was initially passed as an argument and the
following program that was moved into the argument by the monadic structure.

The hybrid implementation correctly assign the ID 1 for the choice that immediately
follows the beginning of the scope. This is the shared choice that is defined in x. The
next choice within the branch originates from the unshared coin and ideally should not
receive an ID. Indeed, the implementation with explicit begin and end tags closes the
sharing scope after the first choice and thus, the second choice does not receive an ID.
The hybrid implementation, however, cannot stop assigning IDs to choices and thus
assigns 2 to the choice.

In the hybrid implementation, when a new scope is opened, the current scope is
overwritten. For this example, this means that the next choice is labeled with 1 again,
since each scope is associated with an initial state that is copied, too, when the sharing
scope is duplicated. Because there is only one sharing scope in the original program, all
occurring scopes are duplicates that were created due to non-determinism.

It is critical that duplicated sharing scopes behave identical because this ensures that
the choices inside the scopes are named the same way, resulting in correct call-time
choice behavior. In the example, however, this leads to a fatal flaw. Until now, assigning
the ID 2 to the unshared choice below the root choice was unnecessary but not incorrect.
As a consequence of the second sharing scope behaving identical to the first one, the
second unshared choice also receives the ID 2. Since we now have two equal IDs within
a branch, this means that the second choice with the ID 2 is linked to the decision of the
first choice with the ID 2, that is, the first unshared coin is linked to the second one.

This was not intended in the original program and proves that the hybrid approach
is unsuitable for modeling scoped effects and, consequently, sharing. Interestingly, this
approach promisingly passed all example tests and algorithms in both Haskell and Coq.
The flaw was only found while doing the finishing touches on the ID generation algo-
rithm. This shows that the hybrid approach is not incorrect in its entirety, but merely
requires a different infrastructure, as shown in the next subsection.

3.3.2. Higher-Order Scope Syntax

The higher-order approach described byWu et al. [2014] is based on amodified program
data type to represent scoped syntax. So far, the type variable sig has been a functor
that is applied to the program type again. In the higher-order type, however, sig is
applied to the program functor and a type, that is, its kind is (* -> *) -> * -> *.

data Prog sig a = Return a | Op (sig (Prog sig a))
data ProgHO sig a = Return a | Op (sig (Prog sig) a)

Due to the functor argument of sig, it is now called a higher-order functor.
Based on the new program type and higher-order functors, the existing infrastructure

for combining signatures, injecting values and pattern matching can be adapted. This is
not discussed here since we are mostly interested in the definition of effect data types.
For example, the higher-order version of the sharing effect is defined as follows.
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data HShare m a = forall x. Share' (m x) (x -> m a)

Due to the new type of sig in the definition of programs, effect data types have an
additional argument now, too. The single argument p has been replaced by a functor
argument m and a type a. Applying m to a corresponds to the argument p we have seen
in the previous effect types.

One advantage of splitting p is that it is now possible to apply m to different types,
whereas we were limited to p before. Wu et al. [2014] demonstrate that this can be
useful, for example, when defining exceptions with throw and catch syntax. Syntax
for catch usually consists of a program where exceptions may occur, a handler for said
exceptions and the remaining program. This structure is very similar to the sharing
effect, since we would also like to pass the shared program as an argument to the sharing
syntax. However, this was not possible with the first-order program type, as we have seen
in the previous subsection. With higher-order programs, however, we can represent
the shared program as an argument of type m x where m represents Prog sig and x
is the return value of the program. The remaining program is a continuation function
x -> m a that takes the result of the shared program and substitutes the results of all
matching calls of share, similar to how the current state is propagated in the program
for the state effect.

The purpose of forall x lies in adding an independent type variable using the lan-
guage extension ExistentialQuantification. In this case, independent means that
the variable does not occur on the left-hand side of the definition and thus can be differ-
ent for two values of the same type. For example, the following data type has a regular
type variable a and one introduced by forall.

data Test a = forall x. Test x a

instance Functor Test where
fmap f (Test x a) = Test x (f a)

With this definition, [Test 42 True, Test () False] is a valid expression of type
Test Bool. When we define a functor instance for Test, the argument x remains un-
modified, while f turns values of type a into b. Although in a different form, this applies
to the sharing data type as well. The call of fmap, or rather the higher-order equivalent
emap, in the definition of bind is responsible for building the program structure. Thus,
fmap appends the remaining program to the shared program, for example in the shar-
ing data type we used for the hybrid implementation. Since fmap transforms a value of
type Share m a into a Share m b, there is no way to leave one program argument (the
shared program) unmodified while applying the function to the other. For this reason,
the additional, independent type variable x is necessary in the definition of the sharing
effect data type.

One disadvantage of the higher-order approach is themore complicated infrastructure
and effect handlers. In short, Other cases are harder to handle because the simple fmap-
approach does not work anymore. Additionally, due to the function argument of Share',
the visualization of sharing scopes and programs becomes difficult. Therefore, we will
pursue the explicit scoping syntax approach for the remainder of the Haskell chapter.
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3.3.3. Explicit Scope Syntax

The previous subsections have demonstrated that program arguments do not correctly
model scopes unless we use higher-order infrastructure. Thus, an alternative approach
is needed. A well known syntactical structure for delimiting scopes are explicit scope
tags in the form of begin and end. Following this idea, we split the sharing syntax into
two parts. One constructor marks the beginning of the scope while the other marks the
ending of the scope.

data Share p = BShare' p | EShare' p

Both constructors have programs arguments. BShare's argument contains the scoped
program block, followed by an Eshare' with the remaining program as an argument.
Similar to the state effect, our smart constructors use return () as an initial program
that is replaced by the actual program when the bind structure is evaluated.

begin :: (Share :<: sig) => Prog sig ()
begin = inject (BShare' (return ()))

end :: (Share :<: sig) => Prog sig ()
end = inject (EShare' (return ()))

For example, the following expression shows a scope that includes the Choice construc-
tor but not the Return values.

inject $ BShare' (inject $ Choice Nothing
(inject $ EShare' (Return 0))
(inject $ EShare' (Return 1)))

Now that we can delimit the scope of the sharing effect, it is time to define the actual
sharing operator.

share :: (Share :<: sig) => Prog sig a -> Prog sig (Prog sig a)
share p = return $ do begin ; x <- p ; end ; return x

share wraps begin and end tags around a call of bind that executes the program p.
Then, the result is returned. One problem of this approach is that sharing tags can be
mismatched. For this reason, sharing syntax should only be accessible by means of the
smart constructor share. Nevertheless, mismatched scoping tags are part of the syntax
definition and need to be handled.

Now that we have defined the syntax of the sharing effect with explicit scope con-
structors, we need to consider how the handler should work. From the structure of the
syntax follows that the handler needs to extract the scoped program between the begin
and end tags and then modify the choices that occur inside the scope. Following this
idea, we divide the sharing handler into two parts. The first part is bshare, a function
that waits for a begin tag and then hands over its program argument to eshare.
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bshare :: (ND :<: sig) => Prog (Share :+: sig) a -> Prog sig a
bshare (Return a) = return a
bshare (BShare p) = eshare p >>= bshare
bshare (EShare p) = error "mismatched Eshare"
bshare (Other op) = Op (fmap bshare op)

Return values are not modified. The constructor BShare denotes that the program
argument p is now within a sharing scope, that is, eshare is called. When eshare has
handled the scope and returns the program that follows, bshare continues handling the
program. Since this program is now outside of the scope, bshare waits for the next
begin tag without modifying any choices.

The case of mismatched scoping tags, that is, an Eshare occurring before a BShare
has opened a scope, can be handled in Haskell with a run-time error.

The second part of the handler is called eshare. It handles the scoped program and
thus, should modify choices in such a way that the program behaves as expected regard-
ing call-time choice.

eshare :: (ND :<: sig)
=> Prog (Share + sig) a -> Prog sig (Prog (Share + sig) a)

eshare (Return a) = return (Return a)
eshare (BShare p) = eshare p
eshare (EShare p) = return p
eshare Fail = fail
eshare (Choice _ p q) = choiceID {- ID? -} (eshare p) (eshare q)
eshare (Other op) = Op (fmap eshare op)

Pure values are simply returned by eshare. When a begin tag is found, this means
that there is a scope within a scope, that is, nested scopes. In this case, eshare keeps
modifying choices because neither the original scope nor the new one has been closed
yet. Contrary to that, closing tags result in switching back to bshare for the remaining
program. Finally, when a choice is encountered, an ID needs to be created for choiceID,
a functionwhich creates a choice with an explicitly passed ID. However, this is a problem.

The ID that the choice came with is always Nothing because choices are created
without IDs. It comes to mind that eshare could have a state that is incremented for
each encountered choice. Unfortunately, this would entail that each choice is assigned a
different ID, that is, two choices could never have the same ID. This defeats the purpose
of choice IDs because it makes sharing impossible.

Consequently, the main finding from the first attempt to define the sharing handler is
that we need to add an identifier to sharing scopes. This allows linking scopes that were
duplicated due to non-determinism in the program and can be used to create choice
IDs. Since the problem of linking scopes is more relevant to the implementation of the
sharing effect than scoped effects in general, it is discussed in the next section.

3.4. Implementation of Sharing as Effect

In this section, the simple implementation of sharing from the previous section is refined
into an implementation that models call-time choice correctly.
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3.4.1. Sharing IDs

To begin with, we consider the following example that shows why we need to link shar-
ing scopes.

exAddSharedCoin :: Prog (Share :+: ND) Int
exAddSharedCoin = share coin >>= \fx -> addM fx fx

The coin in the addition is shared and thus, the expected result is 0 and 2. When
represented as a tree, the example looks like the following.

< ?
├── > < ?
│ ├── > 0
│ └── > 1
└── > < ?

├── > 1
└── > 2

In order to evaluate the example correctly, all choices need to have the same ID. Since
all scopes are copies of the same call to share, the sharing handler needs to behave
equally for all scopes and the choices within. However, this information is lost when
the bind structure in the term duplicates the sharing scopes. Hence, the begin and end
tags of the scope receive an ID. Although it would be sufficient to mark only the begin
tags, it makes checking for mismatched tags easier to give end an ID, too.

data Share p = BShare' Int p | EShare' Int p

With this new data type, how do we define the smart constructor share? There are
two options: share either receives an ID as a parameter or the ID is generated inside
the function. The former is much simpler to implement but would entail that the user
needs to assign a unique ID to each call of share. Since it is good practice to hide such
implementation-specific details from the user, the second approach of generating an ID
within share is the better option.

In order to generate an ID for a sharing scope, we need a state that the ID is derived
from. Again, we have two options. The state could be implemented on the level of the
modeling language or the modeled language. The former would mean that all programs
need to be defined within the state monad, which is conceptually similar to the approach
of user-defined IDs that are put into the program from the outside.

The latter approach uses the state effect, which was discussed in subsection 3.2.3, on
the Prog level. This means that share itself becomes a complex program instead of a
simple smart constructor. In this case, the ID is generated within the program.

Generally, using the Prog state effect is preferable because it does not require adapting
the whole infrastructure to the state monad and it ties in elegantly with the theme of
modeling effects.
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share :: (Share :<: sig, State Int :<: sig)
=> Prog sig a -> Prog sig (Prog sig a)

share p = return $ do
i <- get
put (i + 1)
begin i
x <- p
end i
return x

The signature of the program needs to support an integer state in order to support
sharing syntax. We still use return to create an empty, outer program layer. The inner
program now contains state syntax that retrieves and increments the current state. The
value from the state is then used as the ID of the sharing scope.

The consequence of the added state code is visualized using the example of adding a
shared coin as follows.

do fx <- share coin
addM fx fx

Inlining the definition of share yields the following program.

do fx <- return $ do
i <- get
put (i + 1)
begin i
x <- coin
end i
return x

addM fx fx -- state code is duplicated!

Due to the left identity law for bind, fx <- return $ ... acts like a let binding
where fx is bound to the program that follows return. This results in the state code
being duplicated in the addition. Unfortunately, this is not the desired behavior, as the
following visualization shows.

<0 ?
├── 0> <1 ?
│ ├── 1> 0
│ └── 1> 1
└── 0> <1 ?

├── 1> 1
└── 1> 2

When the state is initialized with 0, the first scope receives the ID 0 and then incre-
ments the state to 1 as part of the state code within the first occurrence of fx. Then, the
second fx is evaluated and the same happens again. Thus, the ID of the following scope
is 1 for both branches. Since the idea of the added state code is to link scopes together,
so that duplicated scopes receive the same ID, this approach has failed. Fortunately, just
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a small modification is needed to fix the problem.
The problem of the current share implementation is that one part of the program –

the state code – needs to be executed immediately, while the other part – the shared
program – should only be evaluated if needed. In the current implementation of share,
there is an empty, outer program layer that is evaluated by bind when using share.
The reason for the nested program structure now becomes clear: The outer program
layer contains the state code that is executed once when bind evaluates share. The
inner program layer, on the other hand, contains the delimited, shared program that is
only evaluated if needed.

do fx <- do -- state code is executed
i <- get
put (i + 1)
return $ do
begin i
x <- coin
end i
return x

addM fx fx

Consequently, the scope IDs are determined before the shared program is evaluated.
Thus, it does not matter if or where in the program the result of share is evaluated.
This is also reflected in the visualization of the above example when executed with the
adapted definition of share.

<0 ?
├── 0> <0 ?
│ ├── 0> 0
│ └── 0> 1
└── 0> <0 ?

├── 0> 1
└── 0> 2

3.4.2. Nested Sharing

With the current definition of the share operator, simple sharing examples are modeled
correctly. However, there are more complex scenarios that have not been considered yet.
For example, calls of share within a shared expression, that is, nested sharing, lead to
incorrect behavior. We consider the following example of sharing and then adding the
result of the addition of a shared coin.

exAddSharedCoinNested :: Prog (Share :+: ND) Int
exAddSharedCoinNested = share (share coin >>= \fx -> addM fx fx) >>=

\fy -> addM fy fy

The problematic part is generating the ID for the inner call of share. Whereas the outer
sharing scope correctly receives the ID 0 for both occurrences within the term structure,
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the ID of the inner scope differs.

<0 <1 ?
├── 1> <1 ?
│ ├── 1> 0> <0 <2 ?
. │ ├── 2> <2 ?
. . │ ├── 2> 0> 0
. . . └── 2> 0> 1

The scope with ID 0 originates from the outer call of share, while the inner scopes
correspond to the nested call. Both scopes with the ID 0 should behave identically,
including the nested scopes. However, in the current implementation this is not the
case. When fy is evaluated for the first time, the inner call to share receives the ID 1
since the state was incremented by the first call. The following scope with ID 0 is not
affected by this because its ID was assigned together with the first scope. The second
nested scope is not linked to the first one, however, because the state code of both scopes
is executed separately. Thus, the increment operation from running the first nested
share affects the second one and the ID 2 is assigned, although it should have been 1.

The problem is this example is therefore that the nested share calls are duplicated
but the state is not. To solve this problem, we can add state syntax to the inner program
of share. Before x <- p is evaluated, we set the state with put , so that nested calls of
share in p behave identical if the scoped program is duplicated.

<0 <1 ?
├── 1> <1 ?
│ ├── 1> 0> <0 <1 ?
. │ ├── 1> <1 ?
. . │ ├── 1> 0> 0
. . . └── 1> 0> 1

For an example like exAddSharedCoinNested, the new state can be as simple as i + 1.
With the added put syntax, the state within the duplicated scope is no longer different
to the state in the original scope. Hence, the nested scope receives the correct ID.

This is not a universal solution, however, since ID clashes can occur in some situations.
When nested sharing is followed by another share call, as in the following example, the
IDs inside the nested share and the IDs after the nested share can clash.

exAddSharedCoinClash :: Prog (Share :+: ND) Int
exAddSharedCoinClash =

share (share coin >>= \fx -> addM fx fx) >>=
\fy -> share coin >>= \fz -> addM fy fz

The corresponding tree visualization of exAddSharedCoinClash looks as follows.
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<1 <2 ?
├── 2> <2 ?
│ ├── 2> 1> <2 ?
. │ ├── 2> 0
. . └── 2> 1

The tree shows scope 1 wrapped around the duplicated, nested share scopes with ID 2.
After that, another scope with ID 2 follows, although this scope belongs to the shared
coin fz.

This clash occurs because nested sharing and repeated sharing have the same names-
pace when put (i + 1) is used to set the scope state. In order to make the names-
paces unique, one option is to set the state to (i * 2) in the outer program layer and
(i * 2 + 1) for the inner program layer. In the adapted syntax tree, we can now see
that the nested calls have the ID 2 * 1 + 1 = 3, while the repeated call received the
ID 2 * 1 = 2. Most importantly, the IDs of the nested scopes and the last scope are
different now.

<1 <3 ?
├── 3> <3 ?
│ ├── 3> 1> <2 ?
. │ ├── 2> 0
. . └── 2> 1

Although the added put statement enables nested sharing, it can have unintended
side effects on repeated sharing in some situations. As an example of this effect, we
consider the following program where deterministic values and coins are shared and
added repeatedly.

exAddSharedCoinRec :: Prog (Share :+: ND) Int
exAddSharedCoinRec = do

mx <- share (return 0)
addM mx $ do

my <- share (addM mx coin)
addM my $ do
mz <- share (addM my coin)
addM mz (return 1)

The interesting property of this program is that already shared values are shared again.
Recalling the modifications we did to allow nested sharing, a new state is set before

the shared program is evaluated. Thus, in the following visualization, we can imagine
the state being set whenever an opening bracket occurs.
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<1 1> <3 <1 1> ?3
├── 3> <3 <3 <1 1> ?3
│ ├── 3> ?3
. │ ├── 3> 1
. . └── 3> 2

Since the value return 0 does not contain choices, the first sharing scope is empty.
When the scope is opened, the state is set to 2 * 1 = 2 by the outer program. How-

ever, the added put statement of the inner program is evaluated, too. Thus, the state is
overwritten and now holds 2 * 1 + 1 = 3.

When the next sharing scope is opened, it receives the ID 3 and sets the state to
7. As defined in the program, the value mx is shared as part of this scope again and
thus, appears next in the tree. However, this means that the opening scope with ID 1
sets the state to 3 again because the state is always set relative to the ID of the scope.
Consequently, when the third occurrence of the share operator is evaluated, it receives
the ID 3 again.

This is incorrect because the share operators are independent and should receive
different IDs. However, the nested sharing scopes overwrite the state in such a way that
each following call of share receives the same ID.

We can fix this problem by resetting the state to the same value as used in the put
statement from the outer program, as shown in the following.

share :: (Share :<: sig, State Int :<: sig)
=> Prog sig a -> Prog sig (Prog sig a)

share p = do
i <- get
put (i * 2)
return $ do

begin i
put (i * 2 + 1)
x <- p
put (i * 2)
end i
return x

The added put statement after x <- p entails that a new state is set with each closing
bracket, too. This is visualized in the following tree.

<1 1> <2 <1 1> ?2
├── 2> <4 <2 <1 1> ?2
│ ├── 2> ?4
. │ ├── 4> 1
. . └── 4> 2

Now the outermost sharing scope sets the state which determines the ID of the next
scope. Thus, the third occurrence of share is assigned the ID 4 in the tree, instead of 2.

The *2/*2+1 approach is used, for example, in the KiCS2 compiler. It can lead to large
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numbers very quickly, however, and is not suitable for Coq due to its Peano representa-
tion of numbers. A more elegant solution can be implemented using a pair of integers
as state. This way, one component is incremented in the outer program layer and the
other component in the inner layer. Nevertheless, resetting the state as described above
is necessary in this approach, too.

3.4.3. Deep Sharing

The implementation of share from the previous subsection supports nested sharing and
top-level non-determinism. Modeling Curry’s call-time choice semantics also includes
non-determinism that occurs in components of data types. Therefore, when a value of
a data type with non-deterministic components is shared, the individual components
should be shared, too. Similar to subsection 2.3.2, data types need to be lifted so that
effectful components can be modeled properly. Since Prog sig is a monad if sig is a
functor, the same monadic transformation works here, too. We reconsider the following
lifted list data type and the corresponding smart constructors cons and nil.

data List m a = Nil | Cons (m a) (m (List m a))

Handling Effectful Components In order to make the existing infrastructure com-
patible with effectful components of data structures, we need to think about the way
handlers work. Since values of lifted data types are considered pure values, although
the components might be effectful, effect handlers do not modify such values. Conse-
quently, the contained effects are not handled.

Instead of differentiating primitive and complex pure values inside all handlers, we
choose a different approach. For example, we consider the following transformation of
a non-deterministic list in Curry syntax.

[0 ? 1, 0 ? 1]
= [0, 0 ? 1] ? [1, 0 ? 1]
= [0, 0] ? [0, 1] ? [1, 0] ? [1, 1]

Beginning with a list that contains non-deterministic elements, we can move choices
from the components to the root of the expression. In the end, only lists without effect-
ful arguments remain. The same concept can be transferred to our model. Before run-
ning any handlers, effects need to be moved outside of the components, which is called
normalization. This concept is implemented in the following type class.

class Normalform m a b where
nf :: m a -> m b

The parameters a and b are used to adapt the return type. For example, the function nf
can normalize an argument of type Prog sig (List (Prog sig) a) into a value of
type Prog sig (List Identity a). This means that the effects that were contained
in the Prog sig argument of List are moved into the outer program layer, while the
inner program layer is replaced with the identity monad. The following instance of nf
for lists implements this idea.
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instance (Normalform n a b, Monad m, Monad n) =>
Normalform n (List n a) (List m b) where

nf mxs = mxs >>= \xs ->
case xs of
Nil -> nil
Cons mz mzs -> nf mz >>= \z ->

nf mzs >>= \zs ->
cons (return z) (return zs)

Firstly, the list is retrieved from the monadic value using bind, followed by pattern
matching. The empty list cannot be further normalized. A non-empty list is normal-
ized by recursive calls of nf for the element and the remaining list. The results need to
be retrieved again because the result of nf is a monadic value of the monad n, while m
is expected. Thus, the return statements in the last line move the results into the new
monad.

With nf as a normalization layer between effect handlers and data types with effectful
components, we can now evaluate expressions like cons coin (cons coin nil), as
the following choice tree demonstrates.

?
├── ?
│ ├── [0,0]
│ └── [0,1]
└── ?

├── [1,0]
└── [1,1]

This tree represents the transformation in Curry shown above. For all data types that
occur in a program, a lifted version with a Normalform instance needs to be defined.
Primitive types require instances, too, but can be simply defined as nf = id because
primitive types cannot contain effectful values.

Sharing Complex Data Types At themoment, complex data types like lists can only be
shared wholly. This means that expressions like let xs = [0?1] in xs ++ xs cor-
rectly yield [0,0] and [1,1], but let xs = [0?1] in head xs + head xs is eval-
uated to all four possible results instead of only 0 and 2, as shown in the following tree.

<1 1> ?
├── <1 1> ?
│ ├── 0
│ └── 1
└── <1 1> ?

├── 1
└── 2

The sharing scopes are opened correctly but close immediately without including the
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choices. To understand how the empty scopes are created, we have a look at a sim-
plified example where head occurs only once. For further simplification, the share
implementation without IDs is used.

share (cons coin nil) >>= headM
= (return $ do begin; x <- (cons coin nil); end; return x) >>= headM
= headM $ do begin; x <- (cons coin nil); end; return x
= headM $ do begin; end; return (Cons coin nil)
= do begin; end; headM (return (Cons coin nil))
= do begin; end; coin

Since x <- (cons coin nil) is inside the scope but return x is outside, this step
moves the choice contained inside the list out of the sharing scope. For the previous
example of adding the list’s head twice, the last line would end with addM coin coin,
which explains why no sharing is present. What is missing here is deep sharing, that
is, sharing of the individual components of the list, so that the decision of the coins are
linked.

Deep sharing is realized similar to the explicit-sharing library2 which implements
the approach of Fischer et al. [2009] presented in subsection 2.3.2. At its core, deep
sharing is implemented via a type class Shareable that all data types with shareable
components need to implement.

class Shareable m a where
shareArgs :: Monad n

=> (forall b. Shareable m b => m b -> n (m b))
-> a -> n a

Although shareArgs is parameterized over a function that generalizes the type of the
sharing operator, it is used only with share in this model. Similar to share, the function
shareArgs adds a monad layer to its input.

As an example, we have a look at the instance of Shareable for List.

instance (Shareable m a) => Shareable m (List m a) where
shareArgs f Nil = nil
shareArgs f (Cons mx mxs) = do mz <- f mx

mzs <- f mxs
cons mz mzs

The empty list does not need to be shared. For non-empty lists, the function f, that
is, share, is applied to the components. Then the result is retrieved using bind and a
list is constructed again. The additional monad layer required by the function type is
implemented using cons, since the function is a smart constructor for a program that
returns a list.

With the implementation of deep sharing by means of shareArgs, we can finally
define a sharing operator that covers nested choices, repeated sharing, nested sharing
and deep sharing, as summarized in the following.

2http://hackage.haskell.org/package/explicit-sharing-0.9
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• Nested choices, that is, multiple choices within one sharing scope, are imple-
mented as part of the handler, which is discussed in the next section.

• Repeated sharing requires adding IDs and state code to the sharing operator in
order to distinguish different scopes and to ensure that duplicated sharing scopes
behave identically.

• Nested sharing requires adding two put statements to the sharing scope. One,
so that nested calls of share have a defined state to work with and the other to
reset state changes from the shared program. In addition, it became clear that the
namespace that supplies IDs for nested sharing needs to be distinct from the supply
for repeated sharing, since the same IDs can otherwise be assigned unintentionally.

• Deep sharing was added by defining type classes for normalization and sharing of
components. The former moves effects from inside a complex data type to the root
of the expression, so that handlers do not need to consider complex data types
themselves. The latter defines a function shareArgs that allows us to not only
share whole terms but also the individual components.

The implementation of share now looks as follows.

share :: (Share :<: sig, State Int :<: sig)
=> Prog sig a -> Prog sig (Prog sig a)

share p = do
(i, j) <- get
put (i + 1, j)
return $ do
begin (i,j)
put (i, j + 1)
x <- p
x' <- shareArgs share x
put (i + 1, j)
end (i,j)
return x'

The ID supply is implemented using a state with two components, which are incre-
mented depending on the program layer. The outer layer, which is responsible for re-
peated sharing, increments the first component, while the second component is incre-
mented in the inner program layer, which affects nested sharing.

We can observe the effect of shareArgs in the same example as before.

share (cons coin nil) >>= headM
= (return $ do begin; x <- (cons coin nil);

x' <- shareArgs share x; end; return x') >>= headM
= headM $ do begin;

x' <- shareArgs share (Cons coin nil); end; return x'
= headM $ do begin;

x' <- (share coin >>= \mz ->
share nil >>= \mzs -> cons mz mzs); end; return x'
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= headM $ do begin;
x' <- (share coin >>= \mz -> cons mz nil); end; return x'

= headM $ do begin; end; (share coin >>= \mz -> cons mz nil)
= do begin; end; (share coin >>= \mz -> headM (cons mz nil))
= do begin; end; share coin >>= id

The result still shows an empty scope from sharing the whole list. There is a differ-
ence, however, in the last part of the expression. Whereas share without deep sharing
resulted in a simple coin, adding shareArgs wraps the coin in another call of share.
Thus, the choice is shared correctly and the share operator behaves as expected.

3.4.4. Sharing Handler

The previous sections were focused on defining a program that models the different
aspects of sharing syntactically, that is, scopes with the correct IDs should appear at the
correct positions. What happens inside those scopes has not been discussed in detail,
yet. Hence, this section focuses on handling the sharing effect.

Beginning with the top-level handler, there is not much of a difference to the first
implementation of the handler in subsection 3.3.3.

runShare :: (ND :<: sig) => Prog (Share :+: sig) a -> Prog sig a
runShare (Return a) = return a
runShare (BShare i p) = nameChoices [trip i 0] p
runShare (EShare _ p) = error "runShare: mismatched EShare"
runShare (Other op) = Op (fmap runShare op)

Although the structure is the same, the function nameChoices that handles the program
inside the scope now has an additional argument of type [Scope]. A scope is a triple
of integers where the first two values represent the ID of a scope and the last one is a
counter. The function trip is a smart constructor for constructing triples from an ID
and an initial counter value.

When a program inside a scope should be handled, the function nameChoices takes
over.

nameChoices :: (ND :<: sig)
=> [Scope] -> Prog (Share + sig) a -> Prog sig a

nameChoices [] _ = error "nameChoices: missing scope"
nameChoices scopes@(i@(l,r,next):scps) prog =

case prog of
Return a -> return a
BShare i p -> nameChoices (trip i 0 : scopes) p
EShare i p -> checkScope i scopes p
Fail -> fail
Choice _ p q -> let f = nameChoices (inc i : scps)

in choiceID (Just i) (f p) (f q)
Other op -> Op (fmap (nameChoices scopes) op)

The signature is the same as for runShare except for a list of scopes. This list repre-
sents the the current scope environment, that is, how many scopes surround the current
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program. The third component of a scope becomes important when a choice is encoun-
tered.

The ID of a scope is not enough to assign an ID to a choice becausemultiple choices can
occur within the same scope. Thus, each scope has a counter that is incremented with
the function inc when a choice has been assigned to an ID, so that the next choice will
receive an different ID. When a scope inside a scope is found, nameChoices continues
handling the program but the ID of the scope is added to the environment. Ending
a scope is performed by the function checkScopes which is called with the ID of the
ending tag, the scope environment and the remaining program.

checkScope :: (ND :<: sig)
=> SID -> [Scope] -> Prog (Share :+: sig) a -> Prog sig a

checkScope i scopes p =
case scopes of

[] -> error "checkScope: mismatched EShare"
[(l,r,_)] -> if (l,r) == i

then runShare p
else error "checkScope: wrong scope"

((l,r,_):scps) -> if (l,r) == i
then nameChoices scps p
else error "checkScope: crossing scopes"

There are three cases to distinguish when ending a scope. Firstly, the scope environ-
ment could be empty, that is, no scope has been opened. Since closing tags are supposed
to follow opening tags, this is an error.

Secondly, the scope environment can have only one surrounding scope. In this case,
the ID of the ending tag is checked against the current scope from the environment. If
it matches, we leave the scope and let runShare handle the remaining program. If the
tags do not match, this is an error.

Thirdly, the environment can contain more than one open scope. Similar to the pre-
vious case, the tag IDs are compared. This time, matching tags mean that we are still
inside a scope. The current scope is left by removing the head element of scopes, fol-
lowed by a call of nameChoices to handle the remaining program. Here it becomes
clear why we need to memorize a counter for each scope: When a nested scope in-
terrupts handling the current scope, we must not begin counting from an initial value
again after the nested scope is handled. Otherwise, the first choice of the scope and the
first choice after the nested scope would receive the same ID.

Based on the definition of sharing syntax and the handler for the sharing effect, we
can now define functions that make use of the explicit sharing operator.
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3.5. Examples

As an example of a more complex program that makes use of explicit sharing, the im-
plementation of permutation sort shown in subsection 3.3.3 is adapted. Conveniently,
the implementation is parameterized over instances of MonadPlus and uses the same
lifted data types that are used to implement deep sharing. Thus, we only need to add
explicit sharing to the sort function.

sort :: (MonadPlus m, Sharing m) => m (List m Int) -> m (List m Int)
sort l = do

xs <- share (perm l)
b <- isSorted xs
guard b
xs

Explicit sharing is added as a type constraint by means of the class Sharing. The only
function defined by Sharing is the sharing operator share, which depends on an in-
stance of Shareable, that is, the function shareArgs for deep sharing must be defined.

class MonadPlus s => Sharing (s :: * -> *) where
share :: Shareable s a => s a -> s (s a)

When comparing the runtime of the explicit sharing implementation with the naive,
strict approach, there is considerable overhead generated by the lifted data type and
effect handlers. Compared to 0.69 seconds for sorting a list of nine elements using the
list monad, the same list now takes over three minutes to sort.

λ> testSort [7,6..1]
[1,2,3,4,5,6,7]
(2.56 secs)
λ> testSort [8,7..1]
[1,2,3,4,5,6,7,8]
(20.01 secs)
λ> testSort [9,8..1]
[1,2,3,4,5,6,7,8,9]
(196.08 secs)

However, there is one case where the explicit-sharing implementation is much faster:
When the predicate isSorted is replaced by a constant function that returns False, lists
of any length are “sorted” in constant time, while the list monad implementation still
generates all permutations of the input list. Thus, the explicit-sharing implementation
models non-strictness correctly. Since the resulting lists are indeed sorted, the issue of
incoherent sharing mentioned in subsection 2.3.2 does not affect this implementation,
either.

The higher-order implementation is faster than the implementation with explicit scop-
ing tags, presumably because less patternmatching is occurring due to the single sharing
constructor, but sorting a list of nine elements still takes just over two minutes.

As another example, the idea of using sorting algorithms and a non-deterministic
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predicate to generate permutations introduced by Christiansen et al. [2016] is imple-
mented for Quicksort. In order to incorporate sharing into the implementation, we use
the function partitionM that splits a list into a pair of lists, depending on whether the
elements fulfill a predicate or not. The result is shared and then accessed via lifted ver-
sions of the functions fst and snd.

quicksortM :: (Sharing m, MonadPlus m)
=> (m Int -> m Int -> m Bool)
-> m (List m Int) -> m (List m Int)

quicksortM mp mxs = mxs >>=
\xs -> case xs of

Nil -> nil
Cons my mys ->

do p <- share (partitionM (mp my) mys)
appM (appM (quicksortM mp (first p)) (cons my nil))

(quicksortM mp (second p))

When quicksortM is called with the non-deterministic predicate \_ _ -> coin, the
function returns all n! permutations for a list of length n. The Quicksort algorithm is
interesting because even a small input list like [1..4] generates many sharing scopes.
When observing the IDs of scopes that are generated, up to ten levels of nested and
repeated sharing occur for a list of four elements. This leads to one reason for the lacking
performance of the implementation, which can be observed by adding the following line
to the handler of the sharing effect.

runShare (BShare _ (EShare _ p)) = trace "empty scope" (runShare p)

The added pattern only matches scopes where the end tag immediately follows the
begin tag, that is, the scope is empty and has no effect. While computing the permuta-
tions of a four-element list, the output empty scope appears 32,010 times, while only
111 choices are assigned an ID. One big issue of the implementation is the creation of
empty sharing scopes by shareArgs. Since deep sharing is not demand-driven, a lot
of sharing scopes are created preemptively. In the example, this accounts for roughly
25,000 empty scopes. The remaining empty scopes can be attributed to the monadic
structure that sometimes moves the argument of share outside of the sharing scope, as
seen in the previous section.

Nevertheless, instead of a highly optimized implementation, the goal of this thesis
is to model Curry’s call-time choice semantics correctly in both Haskell and Coq for
the purpose of reasoning about programs. Since the Haskell implementation is now
completed, we begin transferring the current model to Coq in the next chapter.
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The goal of this chapter is to transfer the Haskell implementation of call-time choice
modeled as effect to Coq. This chapter is based on an approach to formalizing Haskell’s
partiality effect in Coq by Dylus et al. [2019].

Before implementing a specific approach, the challenges that come with Coq’s more
restrictive specification language are discussed. We then explore containers as a solu-
tion to these restrictions and define the effects from the previous chapter as containers.
Since the infrastructure is simplified in Coq, the differences compared to the Haskell im-
plementation are discussed next, followed by the definition of the sharing effect and an
example of non-strict non-determinism. The chapter is concluded with a section about
a higher-order approach, which makes defining the sharing effect easier but comes with
other challenges.

Similar to the Haskell implementation, we begin with the data structure Prog, that
is, the free monad. It allowed us to model programs with effects of type sig and results
of type a in Haskell as follows.

data Prog sig a = Return a | Op (sig (Prog sig a))

The direct translation of the definition to Coq looks very similar to the Haskell version,
aside from renaming and the explicit constructor types.

Fail Inductive Free F A :=
| pure : A -> Free F A
| impure : F (Free F A) -> Free F A.

However, upon loading the file, the definition is rejected by Coq with the following error
message.

Non-strictly positive occurrence of "Free" in "F (Free F A) -> Free F A".

The strict positivity restriction is the main obstacle we have to overcome in order to
model effects in Coq. The reason for this error and its significance is discussed in the
next section.
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4.1. Non-Strictly Positive Occurrence

In section 2.2, we learned that Coq distinguishes between non-recursive definitions and
functions that use recursion. The reason for this is that Coq checks functions for termi-
nation, which is an important part of Coq’s proof logic. To understand why functions
must always terminate in Coq, we consider the following function.

Fail Fixpoint loop (x : unit) : A := loop x.

The function receives an argument x and calls itself with the same argument. Since
this function obviously never terminates, the result type A is arbitrary. In particular, we
could instantiate A with False, the false proposition. Consequently, the value loop tt
: False could be used to prove anything, according to the principle of explosion. For
this reason, Coq requires all recursive functions to terminate for every input.

Returning to the original data type, what is the link between Free and termination? It
is well known that recursion can be implemented in languages without explicit recursion
syntax by means of constructs like the Y combinator or the data type Mu for type-level
recursion.

Fail Inductive Mu A := mu : (Mu A -> A) -> Mu A.

Mu is not accepted by Coq for the same reason as Free: non-strictly positive occurrence
of the respective data type. The problematic property of non-strictly positive data types
is that the type occurs on the left-hand side of a function argument. In the case of Mu,
the type Mu occurs on the left-hand side of the first function argument. This would
allow general recursion that cannot be checked by Coq and thus, such data types are
not allowed in order to preserve the consistency of Coq’s logic.

In case of Free, the non-strictly positive occurrence is not as apparent as for Mu be-
cause the constructors do not have functional arguments. However, F is being applied
to Free F A. If F has a functional argument with appropriate types, the resulting type
becomes non-strictly positive, as shown below.

Definition Cont R A := (A -> R) -> R.

(* Free (Cont R) *)
Fail Inductive ContF R A :=
| pureC : A -> ContF R A
| impureC : ((ContF R A -> R) -> R) -> ContF R A.

The constructor impureC contains a non-strictly positive occurrence of ContF R A.
Consequently, Coq rejects Free because it is not guaranteed that all possible instances
of F satisfy the strict positivity requirement. Representing the Free data type therefore
requires a way to restrict F to strictly positive data types. One approach to achieve this
goal is described in the next section.
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4.2. Containers

Containers, as introduced by Abbott et al. [2003], are an abstraction of data types that
store (polymorphic) values, which includes functors. However, only strictly positive
functors can be modeled as containers. This allows us to define a version of Free that
works with the corresponding containers instead of functors. Consequently, the strict
positivity requirement is ensured by construction and Coq accepts the definition. In the
following, we have a more detailed look at containers and how they relate to functors.

4.2.1. First-Order Containers

For a functor F, we define a first version of a container using Coq’s type class syntax.
Similar to Haskell, a type class contains names and types of definitions that the class
abstracts. Besides types and functions, a type class in Coqmay also contain propositions.
For example, it is possible to encode the monad laws directly into the monad class, so
that only instances which satisfy the laws can be defined.

Class Container F :=
{

Shape : Type;
Pos : Shape -> Type;

}.

The first component of a container is the type Shape. A shape determines how the data
type is structured, regardless of the stored values. For example, the shape of a list is the
same as the shape of Peano numbers: a number that represents the length of the list,
or rather the number of cons or S applications. A pair, on the other hand, has only a
single shape.

The second component of a container is a function Pos : Shape -> Type that gives
each shape a type that represents the positions within the shape. Each position repre-
sents one value of the functor’s type argument A.

In the example of pairs, the shape has two positions, the first and second component.
For lists, on the other hand, each element of a list is a position within the shape. There-
fore, the position type for lists with length n is natural numbers smaller than n. Lastly,
Peano numbers do not store values and therefore, the position type for each shape is
empty.

The extension of a container adds a function that maps all valid positions to values of
type A. It is defined as an inductive data type as follows.

Inductive Ext Shape Pos A :=
ext : forall s, (Pos s -> A) -> Ext Shape Pos A.

Shape and Pos represent the components of a container as defined above. Since the
position type depends on a concrete shape, the definition in Coq is quantified universally
over values of type Shape. The extension of a container is responsible for storing all
values of type A. By means of the position function of type Pos s -> A, these values
can be accessed. Consequently, the extension of a container is isomorphic to the original
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data type. This means that we can define functions to and from that transform values
of the container extension into values of the original data type and vice versa.

As evidence of the isomorphism between both representations, proofs that show the
equations to . from = id and from . to = id are required. The transformation
functions and isomorphism properties are added to the Container class, which results
in the following container definition.

Class Container F :=
{

Shape : Type;
Pos : Shape -> Type;
to : forall A, Ext Shape Pos A -> F A;
from : forall A, F A -> Ext Shape Pos A;
to_from : forall A (fx : F A), to (from fx) = fx;
from_to : forall A (e : Ext Shape Pos A), from (to e) = e

}.

To gain a better understanding of how functors are represented using containers,
the following subsection describes the general scheme for translating a functor into an
isomorphic container1.

4.2.2. Modeling Functors as Containers

As an example of modeling a functor as a container, we consider the non-determinism
effect described in subsection 3.2.3. The definition of the data type is simply translated
from Haskell.

Inductive Choice (A : Type) :=
| cfail : Choice A
| cchoice : option ID -> A -> A -> Choice A.

Shape and Pos When determining the shape of a functor, we first have to consider
whether the data type is recursive. For the effect data types, recursion is introduced by
Free, so the types are generally non-recursive. This means that we only need one shape
for each constructor.

Next, we focus on the arguments of the constructors. Since cfail has no arguments,
there is no data that needs to be stored in its shape. The constructor cchoice, however,
has three arguments. In the definition of the container extension from the previous
subsection, a function of type forall s, Pos s -> A was mentioned. This function
is responsible for all arguments of type A and thus, these values are not part of the shape
for cchoice.

1As described in the container class, only the extension of a container is isomorphic to the original data
type, not the container by itself. Thus, often the container extension is meant when talking about
containers.
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Inductive ShapeChoice :=
| sfail : ShapeChoice
| schoice : option ID -> ShapeChoice.

All arguments of types other than A, that is, option ID in this case, become part of the
shape.

The second component of a container is the function Pos that assigns each shape a
position type. This type describes all positions for values of type A in the constructor
that the shape represents.

Definition PosChoice (s: ShapeChoice) : Type :=
match s with
| sfail => Void
| schoice _ => bool
end.

For the cfail constructor, there are no arguments (of type A). This means that when
Pos is applied to the shape sfail, a type that represents no positions needs to be re-
turned. Thus, the empty type Inductive Void :=. is returned. On the other hand,
cchoice contains two arguments of type A and thus, has two positions. We could de-
fine a new type with two constructors, but for this simple task, bool works just as well.
Consequently, true corresponds to the first position in cchoice and false to the sec-
ond one.

With the definition of Shape and Pos, we can define the container extension for
Choice as follows.

Definition ExtChoice : Type -> Type := Ext ShapeChoice PosChoice.

To and From The transformation functions are a first indicator whether the defini-
tion of the shape and position types are correct. When transforming a value of type
Choice, as defined below, we need to supply two arguments to the container extension
constructor ext.

Definition fromChoice A (z : Choice A) : ExtChoice A :=
match z with
| cfail _ =>

ext sfail (fun p : PosChoice sfail => match p with end)
| cchoice mid l r =>

let s := schoice mid
in ext s (fun p : PosChoice s => if p then l else r)

end.

The first argument of ext is the shape that corresponds to the constructor. For cfail
and cchoice, this is sfail and schoice respectively. The latter takes the optional ID
argument since this information cannot be stored in the position function.

For the second argument of ext, we need to construct the position function pf. The
type of pf’s position argument is determined by Pos applied to the first argument of
ext, that is, the shape that corresponds to the constructor that is currently handled. As
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defined above, PosChoice sfail equals Void.
The position function returns a value of type A for each position. However, since Void

does not have constructors, there is no position for which we need to return a value
of type A. This is expressed in Coq by doing empty pattern matching on the position
argument of the function. The type of the position is known at compile time and thus,
Coq accepts this definition.

The position function in case of cchoice is slightly more involved. This time, the
function PosChoice returns bool as the type of the argument p. Consequently, we
need to return a value of type A for both members of the type bool. Since cchoice has
two such arguments, we return either l or r, depending on whether p is true or false.

Based on this intuition of how the position function works, the function to for Choice
can be defined easily.

Definition toChoice A (e: ExtChoice A) : Choice A :=
match e with
| ext sfail _ => cfail
| ext (schoice mid) pf => cchoice mid (pf true) (pf false)
end.

We pattern match for the different shapes and create values by applying the correspond-
ing constructors of the original data type. This time, there is a position function pf
given by the container extension. Knowing the type of argument it expects, we use the
function to retrieve the values of type A.

Isomorphism Proofs Finally, the remaining parts of the container definition are the
isomorphism proofs. The first proof is done by case distinction on ox.

Lemma to_from_Choice : forall A (ox : Choice A),
toChoice (fromChoice ox) = ox.

Proof.
intros A ox.
destruct ox; reflexivity.

Qed.

In both cases, the transformation functions neither add nor remove information, as
shown in the following for the cchoice constructor.

toChoice (fromChoice (cchoice mid l r))
= let s := schoice mid

in let pf (p : PosChoice s) := if p then l else r
in toChoice (ext s pf)

= let s := schoice mid
in let pf (p : PosChoice s) := if p then l else r

in cchoice mid (pf true) (pf false)
= cchoice mid l r

The second proof is slightly more complicated than the first one. Whereas we had to
show the equality of two values of type Choice before, we now need to do the same for
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values of type ExtChoice. Since such values contain function arguments, we need to
show function equality.

Lemma from_to_Choice : forall A (e : ExtChoice A),
fromChoice (toChoice e) = e.

Proof.
intros A [s pf]. (* introduce e as ext s pf*)
destruct s; simpl; f_equal; extensionality p.
- contradiction.
- destruct p; reflexivity.

Qed.

After destructing the shape of the container extension e for a case distinction and sim-
plifying the expression, the current goal is ext sfail pf = ext sfail pf'.

The tactic f_equal states that two values are equal if the outermost constructors are
the same and all arguments are equal, too. Since the constructor and first argument are
equal, the only remaining goal is to prove that the position functions are equal.

The tactic extensionality is useful to show pointwise function equality, that is,
∀x : fx = gx ⇒ f = g. When extensionality p is applied, the position p appears
in the proof context with an appropriate type, which is determined by the function
PosChoice.

Now there are two goals left to prove that correspond to the shapes of the container.
The first goal arises from sfail and looks as follows.

A : Type
pf : Void -> A
p : Void
============================
match p return A with
end = pf p

Since the position function for sfail takes arguments of type Void, there is a value p of
type Void in the context. However, this is not possible because Void has no constructors.
Consequently, the tactic contradiction solves this case.

For the second case, which corresponds to the shape schoice, the position function
takes arguments of type bool.

A : Type
o : option ID
pf : bool -> A
p : bool
============================
(if p then pf true else pf false) = pf p

When we destruct p, we can see that the if-statement returns pf true if p is true and
vice versa, which leads to two trivially true equations. This shows that the transforma-
tion functions form an isomorphism for the non-determinism container.
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Container Instance Finally, the container instance can be defined as follows.

Instance CChoice : Container Choice :=
{

to_from := to_from_Choice;
from_to := from_to_Choice

}.

The isomorphism proofs contains all necessary information about the container and its
extension. Thus, Coq is able to infer the omitted definitions.

4.2.3. Monad Operations

The Haskell monad instance for Prog uses fmap to distribute a function throughout
the structure determined by the functor argument. Since the Coq implementation uses
containers instead of functors, we need to define a function that behaves similar to fmap.
For this purpose, the function cmap is defined as follows.

Section cmap.
Variable F : Type -> Type.
Variable CF : Container F.

Definition cmap A B (f : A -> B) (x : Ext Shape Pos A)
: Ext Shape Pos B :=
match x with
| ext s pf => ext s (fun x => f (pf x))
end.

Instead of an argument of type F A and a result of type F B, the function has a cor-
responding container extension argument and returns an container extension, too. In
order to behave like fmap, cmap needs to apply the function f to all values of type A.
These values are returned by the position function pf. Thus, the position function is
adapted to f . pf, so that it returns values of type B.

Based on this definition, we can define bind for Free. Although a direct definition
would be possible, this can lead to issues with Coq’s termination check in some situation.
Therefore, the function argument is introduced as a section variable.

Section free_bind.
Variable A B : Type.
Variable f : A -> Free CF B.

Fixpoint free_bind' (ffA: Free CF A) : Free CF B :=
match ffA with
| pure x => f x
| impure e => impure (cmap free_bind' e)
end.

End free_bind.

The function free_bind is defined similar to the Haskell version. Since f is a sec-
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tion variable instead of an argument of the function, fmap (>>= f) becomes cmap
free_bind'. Outside of the section, we can now define free_bind by flipping the
argument order, so that the function argument is moved to the usual position.

Using Coq’s notation mechanism, we can define bind as an infix operator to keep the
definitions similar to the Haskell implementation.

Notation "mx >>= f" := (free_bind mx f)
(at level 20, left associativity).

When defining notations, an explicit precedence level – ranging from 0 to 100 – and
information about the associativity is required. Similar to Haskell, bind has a low prece-
dence and is left associative.

While we could define a monad type class and an instance for Free, this would lead to
non-strict positivity errors when defining, for instance, lifted data types. Consequently,
instead of return, the function pure is used to create monadic values.

4.3. Modeling Effects

In the previous section, a technique for representing functors as containers was pre-
sented. The motivation for this was the issue of non-strictly positive occurrence errors
in the definition of Free. Since containers can only represent strictly positive functors,
the following definition is accepted by Coq.

Variable F : Type -> Type.

Inductive Free (CF : Container F) A :=
| pure : A -> Free CF A
| impure : Ext Shape Pos (Free CF A) -> Free CF A.

The parameter F is replaced by the container that represents F. Instead of writing F
(Free F A) as the first argument of impure, we can now use the extension of the
container CF applied to Free CF A. Although not explicitly defined, it is inferred from
the context that Shape and Pos are components of CF.

4.3.1. Infrastructure

With the Free data type defined, we can begin implementing the remaining infrastruc-
ture. In the Haskell implementation, various type classes and language extensions were
used to simplify pattern matching and smart constructors. For the Coq implementation,
the infrastructure is not implemented as generalized as before, but rather tailored to the
purpose of modeling call-time choice. This is, for example, that handlers do not work
with polymorphic signatures like ND :+: sig.

Combining Effects Although it would be possible to merge all effects into one call-
time choice effect with a large handler, the combination of independent effects is still
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a good idea in terms of modularity. Thus, we need a counterpart to the functor :+: in
Haskell.

Variable F G : Type -> Type.

Inductive Comb A : Type :=
| cinl : F A -> Comb A
| cinr : G A -> Comb A.

The translated functor is still parameterized over two functors F and G that represent
effects. Since Comb combines effects into a new effect functor, we need to represent the
combination as a container, too. We assume that we have containers CF : Container
F and CG : Container G for both functors. The shape can then be defined as a sum
type – the Haskell equivalent is Either – of the containers’ shapes.

Definition ShapeComb : Type := sum (@Shape F CF) (@Shape G CG).

The same principle applies to the function Pos.

Definition PosComb (s : ShapeComb) : Type :=
match s with
| inl x => @Pos F CF x
| inr x => @Pos G CG x
end.

The shape argument can be distinguished by means of the sum constructors inl and
inr. Depending on the sum constructor, the shape inside is passed to the Pos function
of either CF or CG.

The transformation functions for Comb use the transformation functions defined in the
containers for F and G. Similarly, the isomorphism proofs use the properties arising from
CF ∼= F and CG ∼= G. The transformation functions are omitted here since they follow
mostly the same approach as for an effect like Choice. However, the definitions can be
found in subsection A.2.2

Syntax Smart Constructors In the Haskell implementation, the type class :<: was
used to inject syntax into a program, that is, an appropriate nesting of the combination
functor :+: was derived from the type context. Contrary to that, the Coq implementa-
tion is based on a fixed effect stack that is handled in a predetermined order.

Whereas we used inject to define syntax smart constructors like the get operator,
we now have to combine the effects manually. Since we have not defined a container for
the state effect yet, we use state as an example of how smart constructors for syntax can
be defined without inject. To avoid adding another type argument to all definitions,
the type of the state is defined as a section variable S.

Inductive State (A : Type) :=
| cget : (S -> A) -> State A
| cput : S -> A -> State A.
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The shape of the state container has two constructors that represent the constructors of
State.

Inductive ShapeState :=
| sget : ShapeState
| sput : S -> ShapeState.

The function S -> A is not part of the shape because it returns a value of type A. Thus,
the position function is responsible for handling this argument. For sput, the first argu-
ment carries the new state from the original constructor.

The function Pos for State returns either S or unit, depending on the given shape.

Definition PosState (s : ShapeState) : Type :=
match s with
| sget => S
| sput _ => unit
end.

Since the function argument of cget returns a value of type A for every S, each value of
S represents a position of the shape sget. cput has only one argument of type A and
thus, the type unit is returned. The transformation functions are omitted here since
this section is focused on effect syntax but can be found in subsection A.2.3.

In order to define smart constructors for the state effect, we first need to define an
effect stack. The effect stack is constructed by means of the combination container and
the containers that correspond to the effects functors. Similar to the Haskell implemen-
tation, the state effect – with a pair of natural numbers as state – should be handled
first. Therefore, state is the the outermost effect of the combination. The other argu-
ment of CComb is the combination of sharing and non-determinism, the former of which
is defined in the next section.

Definition NDShare := CComb (CState (nat * nat))
(CComb CSharing CChoice).

Definition Prog := Free NDShare.

When Free is applied to NDShare, the resulting functor represents programs that are
evaluated with respect to call-time choice.

With the effect stack in mind, we can begin defining smart constructors for the state
effect. The definition of get in Haskell was as follows.

get :: (State s :<: sig) => Prog sig s
get = inject (Get' return)

In Coq, the definition is implemented by defining a value of the NDShare combination
container. Therefore, we need to supply a shape and a position function to the construc-
tor ext, which itself is the argument of the constructor impure for effectful programs.
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Definition Get : Prog (nat * nat) :=
let s : @Shape _ NDShare := inl sget
in impure (ext s (fun p : @Pos _ NDShare s => pure p)).

The shape for get is sget. However, sget is a shape of the state container, whereas we
need a combination shape for this definition to be correct. Consequently, we use inl
as a combination shape with sget as its argument. In this case, inl is used to select
the left container argument of NDShare, which is the state container, as defined in the
effect stack.

The position function takes arguments of type @Pos _ NDShare (inl sget). Ac-
cording to the definition of Pos for the combination container, the function Pos of the
left container is applied to sget. As defined above, the function PosState returns the
type S or rather nat * nat for the shape sget. Since we have a position p of type nat
* nat and need to return a value of type Prog (nat * nat), applying pure to p yields
the correct result.

The smart constructor for put works similar to get, with the difference that the new
state is stored within the shape. Furthermore, the return type is Prog unit because
put has no information to return. Thus, the position function, whose argument p has
the type unit according to PosState, always returns pure tt.

Definition Put (n : nat * nat) : Prog unit :=
let s : @Shape _ NDShare := inl (sput n)
in impure (ext s (fun p : @Pos _ NDShare s => pure tt)).

For the other effects, the syntax smart constructors are defined similarly. Since sharing
and non-determinism are combined in the right argument of the Comb container, the
shapes are wrapped in inr. Then, the shape is wrapped again in inl or inr, depending
on the position of the effect within the second combination container, as shown in the
smart constructor for failed computations.

Definition Fail A : Prog A :=
let s : @Shape _ NDShare := inr (inr sfail)
in impure (ext s (fun p : @Pos _ NDShare s => match p with end)).

4.3.2. Effect Stack and Handlers

With the definitions of effect and combination containers, smart constructors and the
effect stack from the previous subsection, we can now discuss handlers. Figure 4.1
visualizes the effect stack and how handlers remove effects one by one.
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CComb (CState (nat * nat)) (CComb CSharing CChoice)
↓ runState

CComb CSharing CChoice
↓ runSharing

CChoice
↓ runChoice

Tree
↓ dfs

list

Figure 4.1.: Effect Stack Handling

Beginning with NDShare, the first handler runState handles the state effect and re-
turns a program without state syntax. Then, handlers for sharing and non-determinism
handle the respective effects and a choice tree is returned. The tree is then transformed
into a list via depth-first search according to the algorithm presented in subsection 3.2.3.

The differences between the Haskell and Coq implementation of handlers is shown
using the example of the state effect handler. The state handler was defined in subsec-
tion 3.2.3 as follows.

runState :: Functor f => s -> Prog (State s :+: f) a -> Prog f (s, a)
runState s (Return a) = return (s, a)
runState s (Get k) = runState s (k s)
runState s (Put s' p) = runState s' p
runState s (Other op) = Op (fmap (runState s) op)

Since Coq does not support language extensions like view patterns and pattern syn-
onyms to simplify pattern matching, handlers are defined bymatching plain Prog terms.
The Coq signature of the state effect handler describes the first step shown in Fig-
ure 4.1, that is, the state effect is handled and a program that contains sharing and
non-determinism is returned. Since the state component s of the handler’s return type
Prog sig (s,a) was not used in the Haskell implementation, it is omitted in the Coq
version.

Fixpoint runState A (st : nat * nat) (p : Prog A) : ProgSC A :=
match p with
| pure x => pure x
| impure (ext (inl sget) pf) => runState n (pf st)
| impure (ext (inl (sput st')) pf) => runState st' (pf tt)
| impure (ext (inr s) pf) => impure (cmap (runState st) (ext s pf))
end.

The constructors Return and Op correspond to pure and impure, respectively. While
the Op constructor was hidden by the pattern synonym in Haskell, we now have to
explicitly match for it. Similarly, the function project was used in Haskell to unwrap
the Inl and Inr constructors of :+:, whereas the corresponding constructors are now
determined by the effect stack and thus, can be matched explicitly.

In the effect stack, the state effect is the left argument. Therefore, inl s matches
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both shapes s of the state container. Similarly, inr s works the same as the Other
pattern in Haskell. In fact, the definition is the same for both implementations.

The right-hand sides of the rules are slightly different in the Coq implementation due
to the container structure. Since the program argument is not part of the shape but
stored in the position function, it is retrieved by applying pf to st. This represents the
continuation in the Haskell implementation, which is also applied to the current state.
For sput, the new state is set for the recursive call and pf tt returns the remaining
program.

The last rule covers all other effect shapes in the right branch of the combination con-
tainer, that is, sharing and non-determinism. Since effects are represented as containers,
we need to use cmap instead of fmap. Furthermore, the inr wrapper is removed from
the shape because cmap handles the sharing effect inside all programs that are stored by
the position function. Since the position function is parameterized over a shape, both
must be compatible.

4.3.3. Sharing

For the implementation of the sharing effect in Coq, we first implement the explicit
scoping tag approach. Although the first-order handler of this approach has downsides
that are discussed later in the section, it supports the same functionality as the Haskell
implementation.

The higher-order approach would be suited much better in this regard; however, other
problems arise from the higher-order definition and limit the applicability of the ap-
proach. This is discussed in more detail in section 4.5.

We begin with the definition of the sharing container. Similar to the Haskell imple-
mentation, the sharing functor has constructors that open and close a scope. Each con-
structor has an ID and an argument that represents the remaining program.

Inductive Sharing (A : Type) :=
| cbsharing : (nat * nat) -> A -> Sharing A
| cesharing : (nat * nat) -> A -> Sharing A.

The corresponding container is easily defined according to the scheme presented in
subsection 4.3.1.

Inductive ShapeSharing :=
| sbsharing : (nat * nat) -> ShapeSharing
| sesharing : (nat * nat) -> ShapeSharing.

Definition PosSharing : ShapeSharing -> Type := fun _ => unit.

The ID is stored in each constructors’ shape and the argument of A means that each
shape has one position. Thus, the position function returns unit for both shapes.

Similar to the Haskell implementation, the type classes Shareable an Normalform
allow deep sharing and normalization of effectful expressions. The definitions are sim-
ilar to the Haskell implementation, except for the normal form instance for lists, which
requires inlining the Share operator because the termination checker does not accept
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the definition otherwise.
Combined with smart constructors for begin and end, we can define the Share oper-

ator as follows, which is mostly a direct translation of the Haskell implementation sans
do-notation.

Definition Share A `(Shareable A) (p : Prog A) : Prog (Prog A) :=
Get >>= fun '(i,j) =>
Put (i + 1, j) >>
pure (BeginShare (i,j) >>

Put (i, j + 1) >>
p >>= fun x =>
shareArgs x >>= fun x' =>
Put (i + 1, j) >>
EndShare (i,j) >>
pure x').

The only remaining part of the sharing effect is the handler. In Haskell, the handler
is implemented as a mutually recursive pair of functions that handle sharing inside and
outside of a sharing scope. Since Coq loads definitions sequentially, mutual recursion
poses a problem when checking the function for termination. Adding one function as
an higher-order argument to the other one does not convince Coq that the function
terminates. However, defining the “inside-scope” handler as a local definition using let
fix works. To keep the definition readable, the functions are discussed separately here.

Fixpoint runSharing A (p: ProgSC A) : Free CChoice A :=
match p with
| pure x => pure x
| impure op =>

match op with
| ext (inl (sbsharing n)) pf => nameChoices 1 n [n] (pf tt)
| ext (inl (sesharing n)) pf => runSharing (pf tt) (* error *)
| ext (inr s) pf => impure (cmap (@runSharing A) (ext s pf))
end

end.

The handler is largely the same as in Haskell with the exception of an additional
argument n for nameChoices. This value represents the head of the list of scopes,
which is the following argument. Since Coq only accepts total functions, the case of
an empty scope context – which can never occur because the inner handler is called
with a non-empty scope and because it returns as soon as the last scope has been closed
– would need to be handled cumbersomely. Thus, the invariant of a non-empty list is
enforced by a separate head element.

There is, however, an issue with the rule for sesharing. Since the shape represents
an ending tag in the outside-scope handler, an error is thrown in the corresponding rule
of the Haskell implementation. Although it is impossible to construct a faulty program
by only using the Share operator, mismatched constructors need to be handled. There
are two options: Firstly, the return type of the sharing handler could be wrapped in
option, so that error cases return no result. This is, however, not an ideal solution
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because it would entail that we always have to reason about option values in proofs.
A more practical approach is to ignore mismatched tags and to continue handling the

remaining program that is associated with the tag. While this approach is still not ideal,
it is the most practical solution to this problem.

The function nameChoices has the same issue of mismatched tags when a closing tag
with an ID different than the current scope occurs. This situation is handled the same
way as in runSharing. When a choice is encountered, an ID is assigned based on the
current scope and scope counter, as seen in the Haskell implementation.

An alternative solution to the problem of handlingmismatched tags is the higher-order
approach discussed in section 4.5. First, however, a few examples that demonstrate the
functionality of the Coq implementation are discussed in the next section.

4.4. Examples

Coq is language without native support for non-strictness and non-determinism. Al-
though the latter is also true for Haskell, the former is part of Haskell’s evaluation strat-
egy. Thus, examples that feature non-strict non-determinism are far more interesting in
Coq because the non-strictness can be attributed solely to the model. For this reason,
the first example is the function recList, which negates the head of a list and then
adds either the tail or the result of a recursive call of recList applied to the tail. This
function can be defined in Curry as follows.

recList :: [Bool] -> [Bool]
recList xs = case xs of

[] -> []
y : ys -> not y : (ys ? recList ys)

To translate this function to the Haskell model, we use the lifted list type and replace
pattern matching with bind.

recList :: (Sharing m, MonadPlus m)
=> m (List m Bool) -> m (List m Bool)

recList fxs = fxs >>= \xs ->
case xs of

Nil -> nil
Cons fy fys -> cons (notM fy) (fys `mplus` recList fys)

One could expect that the same definition – apart from syntactical differences – works
in Coq. Unfortunately, this is not the case. The termination check throws an error
because it is not obvious that fys is a structurally smaller than fxs.

A technique proposed by Chlipala [2013], which was already discussed briefly in sub-
section 2.2.2, works by splitting a recursive function into two definitions, where one is
recursive, but takes plain values instead of Prog arguments, and the other is a simple
definition that contains the first call of bind.
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Fixpoint recList' (xs : List bool) : Prog (List bool) :=
match xs with
| Nil' => nilM
| Cons' fy fys => consM (notM fy)

(fys ? fys >>= fun zs => recList' zs)
end.

Definition recList (fxs : Prog (List bool)) : Prog (List bool) :=
fxs >>= fun xs => recList' xs.

This adapted definition entails that the recursive call of recList' cannot work with
the argument fys directly, but instead needs to be called as an argument of bind. Coq
now accepts the new definition.

To test non-strict evaluation of non-determinism in the Coq model, we consider the
expression recList [True, False]. Fully evaluating the expression is not very inter-
esting because we cannot observe non-strictness this way. However, when the result is
only partially demanded, for example with head, the interplay of non-strictness and
non-determinism becomes visible. In the following, a few examples with T and F as
Boolean constructors are evaluated in Curry and Coq.

Testing Non-Strict Non-Determinism We begin with an example which shows that
non-strictness is preserved in the Coq model. The following shows the application of
head to recList [T, F] in Curry.

head $ recList [T, F]
= head $ not T : ([F] ? recList [F])
= F

Since head does not evaluate the tail of its list argument, no non-determinism is intro-
duced and only the negated first element is returned. In Coq, the expression evaluates
to the same result. Because the term is simple enough, it is not necessary to handle the
program, as it can be viewed as a Prog value.

🐔> Compute (headM (recList (consM T (consM F nilM)))).
pure F : Prog bool

The next example shows how non-determinism is only introduced as demanded. In-
stead of applying head to the expression directly, tail is applied first.

head $ tail (recList [T, F])
= head $ tail (not T : ([F] ? recList [F]))
= head $ [F] ? recList [F]
= head [F] ? head (recList [F])
= F ? head (not F : ([] ? recList []))
= F ? T

The expression now evaluates to two results due to the choice introduced by evaluating
recList once. The Coq Prog term quickly grows in size, so it is handled and thus
represented as a list of results.
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🐔> Compute handle (headM (tailM (recList (consM T (consM F nilM))))).
[F; T] : list bool

Again, the Coq implementation yields the correct result.
In the function recList', the position of bind is critical for preserving non-strictness.

For example, if bind was moved to the root of the expression as follows, the tail of the
list would be evaluated even if only the head is demanded.

Fixpoint recList' (xs : List bool) : Prog (List bool) :=
match xs with
| Nil' => nilM
| Cons' fy fys => fys >>= fun zs => consM (notM fy)

(fys ? recList' zs)
end.

Consequently, the following expression would not return the expected value [F], but
fail instead, because Fail is evaluated although it is not demanded.

🐔> Compute handle (headM (recList (consM T Fail))).
[F] : list bool

For this reason, it is necessary to move calls of bind as close as possible to the position
where the value is needed. This is especially important if there are case or if branches
where the bound value is not needed.

After this short demonstration of the call-time choice model in Coq, we explore an
alternative to the explicit scoping tag approach in the next section.

4.5. Modeling Effects using Higher-Order Containers

The first-order approach of modeling effects shown in the previous sections allows rep-
resenting scoped effects only with explicit scope delimiters. In the last chapter, a higher-
order approach was briefly discussed in subsection 3.3.2 as an alternative way to define
scopes without explicit delimiters. Due to the more abstract definition and the function
arguments in the term structure, it was not suitable for discussing the different aspects of
the sharing implementation. However, with the prospect of avoiding mismatched scope
tags being a tangible benefit, it seems worthwhile to pursue this approach in Coq.

In the following, we first discuss a naive implementation of higher-order containers
that misses expressiveness. The next iteration fixes this issue at the cost of no longer
being a monad. Finally, an implementation that can represent the sharing effect while
retaining the monadic properties is presented.

4.5.1. Higher-Order Containers

In the higher-order approach, effect signatures are represented not as a simple functor,
but as as higher-order functor of kind (* -> *) -> * -> *. Similar to the first-order
data type for Prog, the following higher-order version fails due to non-strictly positive
occurrence of Free.
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Fail Inductive Free F A :=
| pure : A -> Free F A
| impure : F (Free F) A -> Free F A.

This calls for a higher-order container that is able to represent higher-order functors.
Initially, one could assume that we can adapt the first-order container by replacing the
functor F with the higher-order functor H and adding the necessary functor arguments
of H to the list of quantified variables, as follows.

Class HContainer (H : (Type -> Type) -> Type -> Type) :=
{

Shape : Type;
Pos : Shape -> Type;
to : forall F A, Ext Shape Pos F A -> H F A;
from : forall F A, H F A -> Ext Shape Pos F A;
to_from : forall F A (fx : H F A), to (from fx) = fx;
from_to : forall F A (e : Ext Shape Pos F A), from (to e) = e

}.

The extension of such a higher-order container needs to be adapted, too.

Inductive Ext Shape (Pos : Shape -> Type) (F : Type -> Type) A :=
ext : forall s, (Pos s -> F A) -> Ext Shape Pos F A.

Similar to higher-order functor data types, such as HShare, the additional type variable
m :: * -> * needs to be represented in the container. Thus, it is added as a parameter
F to the container extension. Since higher-order data types like HShare have arguments
of type m a, it seems appropriate to adapt the type of the position function to return
values of type F A.

With the adapted higher-order container, we can now represent higher-order pro-
grams using a version of Free that works with higher-order containers. For the addi-
tional functor argument of Ext, we use Free C, similar to the Haskell implementation.

Variable H : (Type -> Type) -> Type -> Type.

Inductive Free (C : HContainer H) A :=
| pure : A -> Free C A
| impure : Ext Shape Pos (Free C) A -> Free C A.

With the adapted definition of Free, it is possible to define containers for the effects
non-determinism, state and combination. The containers look almost identical to the
original definitions because whenever the argument A occurred in the first-order data
type, we can now use F A in the higher-order definition. However, one effect cannot be
represented with this container definition: sharing.

Higher-Order Sharing Container Since the sharing effect can be defined without ex-
plicit scope delimiters in the Haskell higher-order implementation, we need to consider
why this container definition is not sufficient. The definition of the higher-order sharing
functor in Coq is as follows.
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Inductive Sharing F (A : Type) :=
csharing : forall X, nat * nat -> F X -> (X -> F A) -> Sharing F A.

Compared to the other effects, the argument F X is difficult to represent, because the
position function only handles values of type F A. The definition of Shape and Pos for
Sharing is as follows.

Inductive ShapeSharing (F : Type -> Type) :=
| ssharing : forall X, nat * nat -> F X -> ShapeSharing F.

Definition PosSharing F (s : ShapeSharing F) : Type :=
let '(@ssharing _ X _ _) := s in X.

Since the value of type F X cannot be stored by the position function, the shape needs
to store the type X, an ID and a value of type F X in its single shape. The function Pos
then returns the type that is stored inside the shape, because for each X, the function
argument X -> F A returns a value of type F A. Consequently, each value of type X
represents a position within the shape.

This definition is isomorphic to the original data type but it does not fit the container
class because the shape – and consequently the function Pos – need to be parameterized
over the functor F in order to store a value of type F X. Although the container can
be adapted to allow another parameter for Shape and Pos, this approach ultimately
fails when defining Free. The reason for this is that the additional functor argument
is instantiated with Free C, just like the regular functor argument Ext. However, this
moves Free to a possibly non-strictly positive position and thus, is not accepted by Coq.

4.5.2. Indexed Containers

The search2 for a container definition that is powerful enough to represent the sharing
effect while preserving strict positivity leads to the concept of indexed containers, intro-
duced by Altenkirch et al. [2015]. The main difference between ordinary and indexed
containers is an additional context function Ctx that determines the return type of the
position function. Instead of the fixed type F A, the parameter A is determined by the
context function. The context thus becomes part of the container, as shown below.

Class HContainer :=
{

Shape : Type;
Pos : Shape -> Type;
Ctx : forall s : Shape, Pos s -> Type -> Type

}.

Inductive Ext (C : HContainer) (F : Type -> Type) A :=
ext : forall s, (forall p : Pos s, F (Ctx s p A)) -> Ext C F A.

The definition of Ext is adapted by adding a position parameter p to the position
2Thanks to Li-yao Xia for referring to indexed containers as a solution to this problem on stackover-
flow.com, https://stackoverflow.com/a/54892792/11112994
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function and replacing A with Ctx s p A. Since the context function has A as a param-
eter, higher-order functors where F occurs only as F A can be represented as before by
defining Ctx as a constant function that returns A.

The new definition of the position function means that we no longer have to store
a value of type F X as part of the shape. Therefore, the shape does not need to be
parameterized over F.

Inductive ShapeSharing :=
| ssharing : nat * nat -> Type -> ShapeSharing.

The type X is still part of the shape, nevertheless, since the sharing effect makes use of
the context function, which can only return a type that is part of one of its arguments.
The position type is now defined as an inductive definition.

Inductive PosSharing (s : ShapeSharing) : Type :=
| pshared : PosSharing s
| pcont : shapeType s -> PosSharing s.

The constructor pcont has an additional argument of type shapeType s, that is, a
selector function that returns the type argument of s. The reason is that the function
argument of ssharingwith type X -> F A holds a value of type F A for each X, similar
to the continuation function encoded in the state syntax. The position of the other
argument of type F X is represented by pshared.

Finally, the context function is defined. For the shared program, the context needs
to return the type X, so that the position function yields a value of type F X. The type
X is stored in the shape and thus, is retrieved using shapeType. Since the remaining
program returns values of type A, the context function does so, too.

Definition CtxSharing (s : ShapeSharing) (p : PosSharing s)
: Type -> Type :=
match p with
| pshared _ => fun _ => shapeType s
| pcont _ _ => fun A => A
end.

The above definition of the sharing container is isomorphic to the original data type.
Furthermore, indexed containers do not require a parameterized shape or Pos func-
tion, which was the reason why the first definition of higher-order containers in subsec-
tion 4.5.1 failed. Consequently, we can use the same definition of Free as shown in the
last subsection.

Although we are now able to represent all necessary effects as containers and have
a container definition that is strictly positive when used with Free, the higher-order
implementation is still not as expressive as the first-order version.

Considering what is important for writing programs with the syntax we defined, the
aspect of combining programs comes to mind. In the first-order Coq implementation,
we defined the function free_bind in order to use the same monadic structure from
the Haskell version. One important part of the definition of free_bind was cmap, the
container-equivalent of fmap. We begin constructing the definition of cmap using proof
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mode as follows.

Definition cmap A B F (f : F A -> F B) (x : Ext Shape Pos Ctx F A)
: Ext Shape Pos Ctx F B.
destruct x as [sh pf].
apply ext with (s := sh).
intros.

At this point in the proof, the new position function is defined. The context and current
goal is shown in the following.

A, B : Type
F : Type -> Type
f : F A -> F B
sh : Shape
pf : forall p : Pos sh, F (Ctx sh p A)
p : Pos sh
============================
F (Ctx sh p B)

The context contains the position function pf from the container extension that was
destructed and the position argument p from the new position function that we are
trying to construct. Additionally, we have the function f that we can use to turn values
of type F A into F B.

The context function enables us to store values of different types in the position func-
tion. Although this allowed us to define the sharing container and works well with Free,
it becomes problematic now. In the proof, we have variables sh and p that represent
arbitrary shapes and positions, respectively. Thus, we have no way of knowing whether
the context function returns A or a different type and therefore, cannot apply the func-
tion f. Since cmap is essential for defining bind over Free, the idea of a context that
can either return A or any other type is not feasible. There is, however, a solution to this
problem, as presented in the next subsection.

4.5.3. Indexed Bi-Containers

The previous subsections have shown that both the naive higher-order container defi-
nition and indexed containers are not sufficient to represent the higher-order Haskell
implementation. Whereas the naive version can reuse the first-order definition of cmap
but does not work with Free, indexed containers harmonize with Free but cmap can-
not be defined. Based on this observation, a combination of both container definitions
would be ideal.

A bi-container, as defined by Ghani and Kurz [2007], consists of two containers that
use the same shape but have different Pos and position functions. Applied to the topic
of higher-order containers, this means that we split Pos into two functions: The first
function behaves like the higher-order Pos function from the naive implementation and
the second one is used in conjunction with the context. The definition of a higher-order
container is adapted as follows.
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Class HContainer :=
{

Shape : Type;
Pos : Shape -> Type;
PosX : Shape -> Type;
Ctx : forall s : Shape, PosX s -> Type;

}.

The container extension now has two position functions. The first one handles values
of type F A, whereas the second one returns values of a type that is determined by the
context. Since F A is handled by the first function, the context no longer needs the
parameter A.

Inductive Ext (C : HContainer) (F : Type -> Type) A :=
ext : forall s,

(Pos s -> F A) -> (forall p : PosX s, F (Ctx s p)) -> Ext C F A.

This definition of the container extension allows us to define cmap similar to the first-
order version. The first position function returns only values of type F A and therefore
can be mapped over, while the second position function does not contain A and thus,
does not need to be changed. In addition, the shape and Pos functions still do not
require F as an argument. Hence, the indexed bi-container definition works with Free.

With the new approach of higher-order containers, we can define the sharing effect
one last time. The shape remains the same as before with an ID and type argument.
For Pos and PosX, the constructors of the inductive data type are split.

Definition PosSharing (s : ShapeSharing) := shapeType s.

Definition PosXSharing : ShapeSharing -> Type := fun _ => unit.

Whereas pcontwith its argument of type shapeType s is represented by the same type
in PosSharing, the single position of pshared is now handled by PosXSharing.

The context no longer distinguishes between positions and always returns the type
that is stored in the shape argument, since the case of A as a return type is now handled
by the other position function.

Definition CtxSharing (s : ShapeSharing) : PosXSharing s -> Type :=
fun _ => shapeType s.

Now that we are finally able to represent all effects as higher-order containers and
can use these containers with Free and bind for Free-based programs, we are able to
adapt the remainder of the code base. For the most part, the differences between first-
order and higher-order are negligible and can be implemented by adding the additional
position function of ext to patterns and expressions.

The adapted code works flawlessly for programs with primitive result types and re-
sult types that contain the lifted pair data type. There is, however, a problem when it
comes to lifted, recursive data types like lists. In the following, Prog is defined as Free
NDShare where NDShare is the effect stack defined in subsection 4.3.2.
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Fail Inductive List A :=
| nil : List A
| cons : Prog A -> Prog (List A) -> List A.

Coq does not accept this definition due to non-strict occurrence of List in the second
constructor. Unfortunately, it is not obvious why this definition is rejected by Coq. For
each part of the definitions of Free and Ext, there is a constellation where List can be
defined without errors, but together the definition always fails.

The non-strictly positive occurrence error can also be evidence of truly nested data
types like the type Bush introduced by Bird and Meertens [1998].

data Bush a = NilB | ConsB (a, Bush (Bush a))

Such nested self-applications are not allowed in Coq, which might be the reason why
the definition of List fails.

It is possible to circumvent this error by defining the data type using continuation
passing style, that is, the list argument is encoded in a function that returns the list’s
tail after being applied to some value.

Inductive List A :=
| nil : List A
| cons {T : Type} : Prog A -> Prog T -> (T -> List A) -> List A.

While this definition is accepted by Coq, we do not gain much because we cannot define
other crucial functions due to inconsistent universes and other errors related to Coq’s
type hierarchy.

In conclusion, the higher-order approach is an elegant solution to the problem of mis-
matched syntax delimiters and can be implemented in Coq using indexed bi-containers.
Although it is ultimately not possible to define recursive data type definitions with the
resulting Prog data type, it is not clear whether there is a fundamental issue with the
approach or if Coq’s termination check is too restrictive in this case. Nevertheless, the ex-
amples that do not feature recursive data types inspire confidence that the higher-order
implementation of call-time choice in Coq works correctly, just like the fully functional
first-order version.
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Reasoning about the Coq Model

In the last chapter, we have modeled call-time choice as effect in Coq. Although we
are now able to define and evaluate Curry programs, this is the case for the Haskell
implementation as well. Thus, this chapter focuses on reasoning about properties of the
model using Coq’s proof logic.

We begin with a section about program equality, because we need to define when
two programs are considered equal in order to reason about them. Then, induction
principles are discussed as a prerequisite for the following section about the laws of
sharing, where we have a look at properties of the explicit sharing operator.

5.1. Program Equality

There are multiple aspects to consider when reasoning about program equality. For in-
stance, one could say that two programs are equal only if they are structurally identical.
This is, however, not a very useful property because programs can have the same be-
havior and thus, yield the same results, although they are structurally different. Conse-
quently, defining equality of programs by means of their semantics is a better approach.

We have already learned that an effect handler describes the semantics of an effect.
Hence, applying the effect handlers of all occurring effects describes the semantics of a
program. In the last chapter, the effect stack of the Coq implementation was discussed.
The same order of effects is represented in the following definition of the program han-
dler.

Definition handle A `{Normalform A A} (p : Prog A) : list A :=
collectVals (runChoice (runSharing (runState (0,0) (nf p)))).

The program is first normalized by nf, that is, effects that occur inside components of
data structures are moved to the root of the expression. Then, the effect stack is handled
by calling the handlers for state, sharing and non-determinism, followed by the function
collectVals which transforms a choice tree into a list. Because nf can only be applied
to instances of the Normalform class, we add a corresponding type constraint to the
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function.
Based on handle, we can now define program equality as equality of the handled

programs. In order to satisfy the type constraint of handle, we define the type A and a
Normalform instance as sections variables.

Variable A : Type.
Variable NFA : Normalform A A.

Definition Eq_Prog (p1 p2 : Prog A) := handle p1 = handle p2.

When equality is involved in a proof, the tactic reflexivity is vital. This tactic is
defined as part of the Reflexive type class for reflexive relations. Besides reflexivity,
we also want to prove that Eq_Prog is symmetric and transitive, that is, Eq_Prog is an
equivalence relation.

Lemma eq_prog_refl : Reflexive Eq_Prog.
Proof.

intros p.
unfold Eq_Prog.
reflexivity.

Qed.

Instance eq_Prog_Reflexive : Reflexive Eq_Prog := eq_prog_refl.

In case of program equality, the equivalence relation proofs follow a common pattern.
First, the variables are introduced. Then, the definition of Eq_Prog is applied with
unfold. Finally, we can use the corresponding property of the predefined list equality
to conclude the proof.

For the proofs of symmetry and transitivity, we use the same approach but with the
tactic symmetry and transitivity, respectively. Since we have defined the proof as
an instance of the Reflexive class, we can now use the tactic reflexivity whenever
the goal is an equation over values of type Eq_Prog.

5.2. Induction Principles

When the tactic induction is applied in a proof, for example, when reasoning about
lists, an induction hypothesis “magically” appears, even for self-defined data types. This
is, however, not as much magic as Coq automatically generating an induction principle.
Such a principle states under which conditions a proposition holds for a value of some
type. For example, the induction hypothesis for lists can be viewed using the command
Check list_ind, where the suffix _ind marks automatically generated induction hy-
potheses.

list_ind : forall (A : Type) (P : list A -> Prop),
P nil ->
(forall (a : A) (l : list A), P l -> P (a :: l)) ->
forall l : list A, P l
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The induction principle for lists states that a proposition P over lists holds for all lists
under two conditions. Firstly, the property needs to hold for the empty list. Secondly,
if we have a list a :: l, the proposition must hold for l.

When we do an induction proof for lists, Coq applies this principle and thus, generates
two subgoals that corresponds to the premises of the principle. For the second subgoal,
we need to prove P (a :: l) based on the assumption that P l is true. This assumption
is the induction hypothesis that appears for the second subgoal of an induction proof
over lists.

The automatically generated induction principles are sufficient in many cases. How-
ever, there are situations in which the generated principle is too weak for the induction
proof to succeed. For example, the induction principle for Free is as follows.

Free_ind : forall (F : Type -> Type) (CF : Container F)
(A : Type) (P : Free CF A -> Prop),

(forall a : A, P (pure a)) ->
(forall e : Ext Shape Pos (Free CF A), P (impure e)) ->
forall f : Free CF A, P f

The generated induction principle does not have a premise for the impure constructor.
Since the position function of the container extension maps positions to values of type
Free CF A, a premise which states that P must hold for all these values is missing.
Consequently, this part of the induction principle is replaced with a stronger version
that adds a premise for the programs that the position function yields.

Variable Impure_rect : forall (s : Shape) (pf : Pos s -> Free CF A),
(forall p, P (pf p)) -> P (impure (ext s pf)).

With the definition of program equality and a sufficiently strengthened induction prin-
ciple, we can now begin proving properties of the call-time choice model, as demon-
strated in the next section.

5.3. Laws of Sharing

Fischer et al. [2009] define equational laws that an implementation of an explicit sharing
operator should satisfy. These laws, adapted to the notations and constructors used in
the Coq implementation, are shown in Figure 5.1.

81



5. Reasoning about the Coq Model

pure x >>= f = f x (Lret)
p >>= pure = p (Rret)
(p >>= f) >>= g = p >>= fun x => f x >>= g (Bassc)

Fail >>= f = Fail (Lzero)
(p ? q) >>= f = (p >>= f) ? (q >>= f) (Ldistr)

Share (p ? q) = Share p ? Share q (Choice)
Share Fail = pure Fail (Fail)
Share (pure (c x1 ... xn)) = (HNF)

Share x1 >>= fun y1 => ....
Share xn >>= fun yn => pure (pure (c y1 ... yn))

Figure 5.1.: Laws of Sharing

In the last equation, c is a constructor with n non-deterministic components.

Monad Laws The first three equations Lret, Rret and Bassc correspond to themonad
laws and are easily proven because Free transforms containers into monads.

As an exemplary proof, the property Rret is shown. Instead of the Prog type, which
specializes Free with NDShare, we prove the lemma for an arbitrary container CF as
follows.

Lemma bind_pure :
forall A (fA: Free CF A), fA >>= (fun x => pure x) = fA.

Proof.
induction fA using Free_Ind.
- reflexivity.
- simpl.

do 2 f_equal.
extensionality p.
apply H.

Qed.

In the proof, we make use of the custom induction principle for Free. Whereas the
pure case is solved by reflexivity, the impure case begins by removing impure and
ext constructors using f_equal twice. The proof view now looks as follows.

F : Type -> Type
CF : Container F
A : Type

s : Shape
pf : Pos s -> Free CF A
H : forall p : Pos s, pf p >>= (fun x : A => pure x) = pf p
============================
(fun x : Pos s => pf x >>= (fun x0 : A => pure x0)) = pf

Since we need to prove an equation over two functions, we show pointwise function
equality of the position functions using extensionality. The current goal changes as
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follows.

pf p >>= (fun x : A => pure x) = pf p

Now we can prove the goal by applying the induction hypothesis H, which matches
the current goal. Without this induction hypothesis, we would not be able to prove this
property. For this reason, it is necessary to modify the automatically generated induction
principle as shown in the previous subsection.

The proof of Rret, which is just a specialized version of the previous lemma, does not
need additional reasoning, as shown in the following proof.

Theorem Rret : forall (p : Prog A), Eq_Prog (p >>= pure) p.
Proof.

intros p.
rewrite bind_pure.
reflexivity.

Qed.

The properties are defined using the equivalence relation Eq_Prog instead of the pre-
defined equality relation. However, the monad laws hold for structural equality, too.

MonadPlus Laws Lzero and Ldistr are properties of MonadPlus. Since the Haskell
implementation is generalized over instances of MonadPlus instead of using Prog di-
rectly, this property translates to Coq as well.

Theorem Lzero : forall (f : A -> Prog B), Eq_Prog (Fail >>= f) Fail.
intros f.
unfold Eq_Prog, Fail.
simpl.
repeat f_equal.
extensionality p.
contradiction.

Qed.

As an exemplary proof, Lzero can be shown by unfolding the definitions, removing
equal constructors until the position functions remain and then showing pointwise func-
tion equality. Since the position functions inside Fail take arguments of type Void, of
which there are no values, contradiction finishes the proof.

Sharing Laws The last three properties Choice, Fail and HNF are the actual laws of
sharing, that is, equations that reason about the sharing operator.

We begin with the property Fail, that is, sharing a failure equals pure Fail. The
idea of the proof is to let the function handle, introduced by Eq_Prog, evaluate the
supplied programs. Recalling the definition of handle, the first step is to normalize
the program. Thus, we need to define an instance of Normalform for Prog in order to
progress in the proof. The function nf can be defined for nested types like List only
by splitting the function, as we have seen before. Thus, both functions are part of the
Normalform class. For Prog, the definition of nf and nf' is as follows.
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Definition nf'Prog A B `{Normalform A B} (p : Prog A)
: Prog (Prog B) :=
nf p >>= fun p' => pure (pure p').

Definition nfProg A B `{Normalform A B} (pp : Prog (Prog A))
: Prog (Prog B) :=
pp >>= fun p => nf'Prog p.

The function nf binds its argument and then calls nf', where the nf instance for A is
called. The result is bound and then returned twice, similar to the approach shown in
subsection 3.4.3.

Another useful definition of the Normalform class is the following proposition.

Theorem nf_impure : forall s (pf : _ -> Prog A),
nf (impure (ext s pf)) = impure (ext s (fun p => nf (pf p))).

Whenever nf is applied to an impure value, we can move nf into the position function.
In combination with the Normalform instance for Prog, nf_impure allows us to move

nf from the root of the program arguments to the leaves, where it reaches the posi-
tion function of Fail and disappears because the function has empty pattern matching.
Consequently, the handlers can evaluate the effect syntax of Share and Fail. Eventu-
ally, this leads to the same expressions of both sides of the equation. The following proof
reflects this approach.

Theorem Fail : Eq_Prog (Share Fail) (pure Fail).
Proof.

intros.
unfold Eq_Prog, Share, Fail, handle.
simpl.
unfold nf'Prog.
do 4 (rewrite nf_impure; simpl).
reflexivity.

Qed.

The theorem Choice cannot be proven using this simple approach. Eventually, the
proof is stuck because neither bind nor the handlers can be further evaluated. Although
this problem might be solved by more advanced rewriting tactics or custom induction
principles, it is beyond the scope of this thesis.

The last proposition HNF holds by construction. The share operator requires its argu-
ments to be instances of Shareable, where shareArgs applies share to every effectful
component. Therefore, the equation shown in Figure 5.1 is satisfied if the instance is
defined correctly.

In conclusion, the call-time choice model satisfies the monad and MonadPlus laws.
We proved the property Fail and it seems plausible that Choice and HNF hold as well,
although no formal proof has been given.
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6
Conclusion

In this final chapter, an overview of the thesis is given. We discuss the initial goals
compared to the final results, as well as related work and future directions.

6.1. Summary

In the beginning of the thesis, a short overview of Curry’s call-time choice semantics, that
is, non-strict non-determinism and its interplay with sharing, was given. In the following
section, we learned how modeling in Coq works, about the termination checker and
dependent types. The chapter was concluded with a short overview of how the compiler
KiCS2 translates Curry programs to Haskell and how Fischer et al. [2009] model explicit
sharing in Haskell.

In the third chapter, the Haskell implementation of the call-time choice model was
discussed. After an introduction to the free monad, we defined effect syntax according
to Wu et al. [2014] by instantiating the free monad appropriately. We learned about
combining effects and how writing and evaluating programs can be simplified with type
classes and language extensions. Then, we defined the semantics of effects by means
of effect handlers and discussed how the order of handlers can influence the result of a
computation.

As preparation for defining the sharing effect, we explored two working approaches
and one failed implementation for representing scoped effects. The first working ap-
proach used explicit scope delimiters and thus, allowed mismatched scoping tags.

The second approach solved this problem by allowing the scoped program to be a
direct argument of the sharing syntax. However, the higher-order infrastructure was
more complicated and not suitable for discussing the different aspects of the sharing
effect, so the explicit scoping approach was pursued.

The sharing effect, that is, assigning IDs to choices, was then implemented as a pro-
gram. Beginning with a bare-bones version, the necessary adjustments for repeated
sharing, nested sharing and deep sharing were illustrated using examples.

Finally, the effect handler for the sharing effect was discussed, followed by more elab-
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orate examples. The programs made heavy use of sharing with up to ten levels of nested
and repeated sharing scopes. Although the examples worked as expected, it became
apparent that the performance of the implementation is significantly diminished by re-
dundant sharing scopes and the overall amount of pattern matching.

The focus of the fourth chapter was transferring the Haskell implementation to Coq,
based on the approach of Dylus et al. [2019]. Beginning with the first definition, Coq
refused to load the direct translation of the Haskell code due to termination check errors.
We discussed non-strictly positive occurrences as the reason for these errors and why
the termination check is critical for the soundness of Coq’s logic.

As a solution to the non-strictly positive occurrence errors, containers were introduced
as a way of representing only strictly positive functors, which are the base of the effect
system. We then defined containers that represent the effect functors from the previous
chapter and learned about the isomorphism between functors and the corresponding
container extensions.

For the implementation of the effect infrastructure, only a minimized version was im-
plemented since some aspects of the Haskell implementation are not available in Coq.
Thus, the effect stack was defined in a static order and pattern matching, as well as
the smart constructors, worked with plain program constructors. Although, as a con-
sequence, the definitions became more extensive, the implementation of all effects –
including sharing – was possible.

In an intermediate section, we had a look at a recursive list function, which was used
to demonstrate non-strict non-determinism. We compared the non-strict evaluation of
different expressions in Curry to the results of the Coq model and concluded that the
model works as expected.

Concluding the end of the fourth chapter, the higher-order approachwas implemented
in Coq as a solution to mismatched scoping tags in the first-order implementation. Due
to the higher-order structure of functors in this approach, we had to adapt the cor-
responding containers. While the first approach to higher-order containers was not
powerful enough to represent the sharing effect, the second approach was no longer
a monad. The final approach was a combination of both previous implementations,
called indexed bi-containers. Although this container definition solved both problems
and worked for many examples from the test suite, it was ultimately not possible to de-
fine recursive data types with effectful components because the type became non-strictly
positive.

The fifth chapter was devoted to proofs about the Coq model. We first discussed that
structural equality is not sufficient for the purpose of comparing programs. Instead, pro-
gram equality was defined as equality over semantics, that is, the results of the handler.

Next, we discussed how the induction tactic in Coq works and that an automatically
generated induction principle can be too weak for successful induction, using the exam-
ple of the free monad data type.

Finally, we proved a subset of the laws of sharing introduced by Fischer et al. [2009]
for the Coq implementation. The monad and MonadPlus proofs worked flawlessly but
the sharing properties posed a challenge.

We succeeded in proving a property about sharing a failed computation and argued
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that the head normal form property holds by construction, but were not able to prove
the last property about shared choices due to the technical nature of the proof.

6.2. Results

The main goal of this thesis was to model Curry’s call-time choice semantics as effect.
After exploring how effects can be modeled in other languages, we succeeded in imple-
menting the sharing effect by means of explicit scope delimiters and the higher-order
approach in Haskell. Although there is room for optimization regarding the performance
of the model, the correctness of the model in regard to Curry’s semantics has been tested
with an extensive test suite of examples and more complex program definitions.

As part of the main goal, we were able to transfer the approach of explicit scope delim-
iters to Coq. Although the infrastructure is simplified in many ways, the implementation
does not lack expressiveness compared to the Haskell implementation. The ported test
suite yields the same results as in Haskell and we were able to show that non-strictness
and sharing work independently of a language that supports these features natively.

Finally, the concept of indexed bi-containers was introduced as a way of modeling
scoped higher-order effects in Coq. Unfortunately, this implementation is not as expres-
sive as the higher-order counterpart in Haskell due to the inability to model recursive
data types with effectful components.

The secondary goal of this thesis was to prove properties like the laws of sharing for the
Coq implementation. We were able to prove many properties about the implementation,
although not all of them. For the remaining ones, it seems probable that the laws hold
for the implementation and can be proven with more elaborate proof techniques.

6.3. Related Work and Future Directions

The approach of monadic liftings for formalizing Haskell’s partiality has been imple-
mented by Abel et al. [2005] for the dependently typed functional language Agda1.
The implementation is based on an older version of Agda whose termination checker
did not consider non-strictly positive occurrences and thus, is no longer applicable in
modern versions of Agda or Coq.

Representing monadic liftings in Coq for the purpose of reasoning about Haskell code
is the topic of a recent publication by Dylus et al. [2019]. Whereas Abel et al. argue that
monad-generic properties are difficult to prove, Dylus et al. present a technique that
greatly simplifies such proofs. The same approach of representing effects in Coq using
a containerized free monad has been applied in this thesis.

An alternative approach for modeling scoped effects, described by Piróg et al. [2018],
is based on an extended data type for representing effectful programs.

1https://wiki.portal.chalmers.se/agda/
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data Prog f g a = Var a
| Op (f (Prog f g a))
| Scope (g (Prog f g (Prog f g a)))

While the constructors Var and Op are similar to the approach of Wu et al. [2014],
the data type features an additional constructor Scope and a functor argument g that
represents a scoping functor. Whereas we represented scopes as part of the type f
before, this approach moves scoping to the level of the Prog type. Unfortunately, the
application of Prog to itself makes this approach unsuitable for Coq because truly nested
data types yield a non-strictly positive occurrence error.

Future Directions The implementation described in this thesis covers multiple ap-
proaches in Haskell and Coq. Example programs have been tested and first proofs using
this framework were successful. Nevertheless, there are many different options to ex-
tend the work presented in this thesis, a few of which are listed in the following.

• The implementation generates many redundant sharing scopes, partly, because
deep sharing does not happen demand-driven. Fischer et al. [2009] were able
to significantly increase the performance of their implementation of explicit shar-
ing, so the question arises, whether similar optimizations can be applied to this
implementation.

• For the Coq implementation, one interesting, unanswered question is whether it
is possible to finish the implementation of the higher-order approach. Since the
model was rejected only when defining lifted recursive data types, a different rep-
resentation of such types might be more successful. Generally, more detailed er-
ror messages in regard to non-strictly positive occurrences would greatly simplify
finding the cause of such problems.

• Based on the existing proofs presented in the last chapter, one could try proving
the remaining laws of sharing for the presented implementation. On a similar
note, the question arises whether the framework created in this thesis is suitable
for proving properties of (complex) Curry programs.

• Another topic is the representation of other effects using the same infrastructure.
The implementation should be easily adaptable to model, for example, tracing fea-
tures as provided by Debug.Trace in Haskell. This topic is particularly interesting
because tracing interacts with sharing.
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A
Appendix

The repository that contains the code presented in this thesis can be found at the fol-
lowing link.

https://git.informatik.uni-kiel.de/stu114713/mathesis

Each directory contains a Readme file that describes the content in more detail.

A.1. Compilation

The code can be compiled with the following tools.

• Curry: KiCS2, version 2.0.0-b17

• Haskell: GHC, version 8.4.3

• Coq: coqc, version 8.9.0

The Coq files can be compiled by means of the _CoqProject file located in the Coq
directory. The following command creates a makefile, which can then be executed using
make.

coq_makefile -f _CoqProject -o Makefile

A.2. Code

In the following, the complete definition of the subtyping class :<: and its instances is
shown. Due to the overlapping definitions, pragmas are used for prioritization.

In addition, the transformations functions for the combination and state container are
listed.
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A. Appendix

A.2.1. Subtyping Class and Instances
class (Functor sub, Functor sup) => sub :<: sup where

inj :: sub a -> sup a
prj :: sup a -> Maybe (sub a)

instance Functor sig => sig :<: sig where
inj = id
prj = Just

instance {-# OVERLAPPING #-}
(Functor sig1, Functor sig2) => sig1 :<: (sig1 + sig2) where
inj = Inl
prj (Inl fa) = Just fa
prj _ = Nothing

instance {-# OVERLAPPABLE #-}
(Functor sig1, sig :<: sig2) => sig :<: (sig1 + sig2) where
inj = Inr . inj
prj (Inr ga) = prj ga
prj _ = Nothing

A.2.2. Combination Container Transformation Functions
Definition toComb (A : Type) (e: ExtComb A) : Comb A :=

match e with
| ext (inl s) pf => Inl (to (ext s pf))
| ext (inr s) pf => Inr (to (ext s pf))
end.

Definition fromComb A (z : Comb A) : ExtComb A :=
match z with
| Inl x => let '(ext s pf) := from x in ext (inl s) pf
| Inr x => let '(ext s pf) := from x in ext (inr s) pf
end.

A.2.3. State Container Transformation Functions
Definition toState (A : Type) (e: ExtState A) : State A :=

match e with
| ext sget fp => get (fun s => fp s)
| ext (sput s) fp => put s (fp tt)
end.

Definition fromState A (z : State A) : ExtState A :=
match z with
| get f => ext sget (fun p : PosState sget => f p)
| put s a => ext (sput s) (fun p : PosState (sput s) => a)
end.
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